Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felipe D. Lopez-Hilfiker is active.

Publication


Featured researches published by Felipe D. Lopez-Hilfiker.


Nature | 2014

A large source of low-volatility secondary organic aerosol

Mikael Ehn; Joel A. Thornton; E. Kleist; Mikko Sipilä; Heikki Junninen; Iida Pullinen; Monika Springer; Florian Rubach; R. Tillmann; Ben Lee; Felipe D. Lopez-Hilfiker; Stefanie Andres; Ismail-Hakki Acir; Matti P. Rissanen; Tuija Jokinen; Siegfried Schobesberger; Juha Kangasluoma; Jenni Kontkanen; Tuomo Nieminen; Theo Kurtén; Lasse B. Nielsen; Solvejg Jørgensen; Henrik G. Kjaergaard; Manjula R. Canagaratna; Miikka Dal Maso; Torsten Berndt; Tuukka Petäjä; Andreas Wahner; Veli-Matti Kerminen; Markku Kulmala

Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth’s radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere–aerosol–climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.


Environmental Science & Technology | 2014

An Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic Compounds

Ben H. Lee; Felipe D. Lopez-Hilfiker; Claudia Mohr; Theo Kurtén; Douglas R. Worsnop; Joel A. Thornton

A high-resolution time-of-flight chemical-ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adducts has been characterized and deployed in several laboratory and field studies to measure a suite of organic and inorganic atmospheric species. The large negative mass defect of Iodide, combined with soft ionization and the high mass-accuracy (<20 ppm) and mass-resolving power (R>5500) of the time-of-flight mass spectrometer, provides an additional degree of separation and allows for the determination of elemental compositions for the vast majority of detected ions. Laboratory characterization reveals Iodide-adduct ionization generally exhibits increasing sensitivity toward more polar or acidic volatile organic compounds. Simultaneous retrieval of a wide range of mass-to-charge ratios (m/Q from 25 to 625 Th) at a high frequency (>1 Hz) provides a comprehensive view of atmospheric oxidative chemistry, particularly when sampling rapidly evolving plumes from fast moving platforms like an aircraft. We present the sampling protocol, detection limits and observations from the first aircraft deployment for an instrument of this type, which took place aboard the NOAA WP-3D aircraft during the Southeast Nexus (SENEX) 2013 field campaign.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

Ben H. Lee; Claudia Mohr; Felipe D. Lopez-Hilfiker; Anna Lutz; Mattias Hallquist; Lance Lee; Paul M. Romer; R. C. Cohen; Siddharth Iyer; Theo Kurtén; Weiwei Hu; Douglas A. Day; Pedro Campuzano-Jost; Jose L. Jimenez; Lu Xu; Nga L. Ng; Hongyu Guo; Rodney J. Weber; Robert J. Wild; Steven S. Brown; Abigail Koss; Joost A. de Gouw; Kevin Olson; Allen H. Goldstein; Roger Seco; Saewung Kim; Kevin McAvey; Paul B. Shepson; T. K. Starn; Karsten Baumann

Significance We present online field observations of the speciated molecular composition of organic nitrates in ambient atmospheric particles utilizing recently developed high-resolution MS-based instrumentation. We find that never-before-identified low-volatility organic species, which are highly functionalized, explain a major fraction of the total particle nitrate mass measured by the traditional aerosol mass spectrometer. An observationally constrained box model shows that these organic nitrates are likely derived from oxidation of biogenic hydrocarbons and persist in the particle phase for only a few hours. Given their high rate of loss, their fates have significant implications for the budgets of secondary organic aerosol particles and nitrogen oxides but are currently unknown. Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas–particle equilibrium and (ii) have a short particle-phase lifetime (∼2–4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.


Aerosol Science and Technology | 2012

A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species

Reddy L. N. Yatavelli; Felipe D. Lopez-Hilfiker; Julia Wargo; Joel R. Kimmel; Michael J. Cubison; Timothy H. Bertram; Jose L. Jimenez; Marc Gonin; Douglas R. Worsnop; Joel A. Thornton

We describe a new instrument, chemical ionization (CI) high-resolution time-of-flight mass spectrometer (ToFMS) coupled to a micro-orifice volatilization impactor (MOVI-HRToF-CIMS). The MOVI-HRToF-CIMS instrument is unique in that, within a compact field-deployable package, it provides (1) quantifiable molecular-level information for both gas and particle-phase organic species on timescales ranging from ≤1 s for gases to 10–60 min for particle-phase compounds that can be used to efficiently probe oxidation and secondary organic aerosol (SOA) formation mechanisms, and (2) relative volatility information of the detected compounds simultaneously estimated using the programmed thermal desorption information obtained from the MOVI. We demonstrate the capabilities of a prototype instrument using known test compounds and complex mixtures generated from the oxidation of biogenic and anthropogenic hydrocarbons. We present spectra obtained using both negative and positive ion CI with acetate (CH3C(O)O−) and protonated water clusters (H3O+·(H2O) n ), respectively, as reagent ions. The instrument has high mass resolving power (R = 5000 above m/Q 250 Th) and mass accuracy (±20 ppm) enabling estimation of compound elemental composition. Instrument sensitivity in negative ion mode was tested using formic acid as a representative gas-phase compound, and that for particle-phase compounds was tested using palmitic, azelaic, and tricarballylic acids. With a heated MOVI inlet, an ion count rate of ∼15 Hz is achieved when sampling 1 pptv (= 1 pmol/mol) of formic acid (or other monocarboxylic acids) under typical operating conditions. This sensitivity translates to detection limits less than 1 ng/m3 for carboxylic acids in the particle-phase. We also discuss the remaining challenges with this instrument to broadly characterizing gaseous and particulate oxygenated organic compounds in situ. Copyright 2012 American Association for Aerosol Research


Bulletin of the American Meteorological Society | 2015

Meteorology, air quality, and health in London: The ClearfLo project

Sylvia I. Bohnenstengel; Stephen E. Belcher; A. C. Aiken; J. D. Allan; G. Allen; Asan Bacak; Thomas J. Bannan; Janet F. Barlow; David C. S. Beddows; William J. Bloss; Am Booth; Charles Chemel; Omduth Coceal; C. Di Marco; Manvendra K. Dubey; K.H. Faloon; Zoe L. Fleming; Markus Furger; Johanna K. Gietl; R. Graves; David Green; C. S. B. Grimmond; Christos Halios; Jacqueline F. Hamilton; Roy M. Harrison; Mathew R. Heal; Dwayne E. Heard; Carole Helfter; Scott C. Herndon; R.E. Holmes

AbstractAir quality and heat are strong health drivers, and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants, such as ozone, nitrogen dioxide, and fine and coarse particulate matter, in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the Clean Air for London (ClearfLo; www.clearflo.ac.uk) project’s interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures.Within ClearfLo, a large multi-institutional project funded by the U.K. Natural Environment Research Council (NERC), integrated measurements of meteorology and gaseous, and particulate composition/loading within the atmosphere of London, United Kingdom, were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and eleva...


Environmental Science & Technology | 2016

Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA

Felipe D. Lopez-Hilfiker; Claudia Mohr; Emma L. D’Ambro; Anna Lutz; T. P. Riedel; Cassandra J. Gaston; Siddharth Iyer; Zhenfa Zhang; Avram Gold; Jason D. Surratt; B. H. Lee; Theo Kurtén; Weiwei Hu; Jose L. Jimenez; Mattias Hallquist; Joel A. Thornton

We present measurements as part of the Southern Oxidant and Aerosol Study (SOAS) during which atmospheric aerosol particles were comprehensively characterized. We present results utilizing a Filter Inlet for Gases and AEROsol coupled to a chemical ionization mass spectrometer (CIMS). We focus on the volatility and composition of isoprene derived organic aerosol tracers and of the bulk organic aerosol. By utilizing the online volatility and molecular composition information provided by the FIGAERO-CIMS, we show that the vast majority of commonly reported molecular tracers of isoprene epoxydiol (IEPOX) derived secondary organic aerosol (SOA) is derived from thermal decomposition of accretion products or other low volatility organics having effective saturation vapor concentrations <10(-3) μg m(-3). In addition, while accounting for up to 30% of total submicrometer organic aerosol mass, the IEPOX-derived SOA has a higher volatility than the remaining bulk. That IEPOX-SOA, and more generally bulk organic aerosol in the Southeastern U.S. is comprised of effectively nonvolatile material has important implications for modeling SOA derived from isoprene, and for mechanistic interpretations of molecular tracer measurements. Our results show that partitioning theory performs well for 2-methyltetrols, once accretion product decomposition is taken into account. No significant partitioning delays due to aerosol phase or viscosity are observed, and no partitioning to particle-phase water or other unexplained mechanisms are needed to explain our results.


Atmospheric Measurement Techniques | 2016

Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

Carsten Warneke; M. Trainer; Joost A. de Gouw; D. D. Parrish; D. W. Fahey; A. R. Ravishankara; Ann M. Middlebrook; C. A. Brock; James M. Roberts; Steven S. Brown; J. A. Neuman; D. A. Lack; Daniel Law; G. Hübler; Iliana Pollack; Steven Sjostedt; Thomas B. Ryerson; J. B. Gilman; Jin Liao; John S. Holloway; J. Peischl; J. B. Nowak; K. C. Aikin; Kyung-Eun Min; Rebecca A. Washenfelder; Martin Graus; Mathew Richardson; Milos Z. Markovic; Nick L. Wagner; André Welti

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.


Environmental Science & Technology | 2016

Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway

Jiumeng Liu; Emma L. D’Ambro; Ben H. Lee; Felipe D. Lopez-Hilfiker; Rahul A. Zaveri; Jean C. Rivera-Rios; Frank N. Keutsch; Siddharth Iyer; Theo Kurtén; Zhenfa Zhang; Avram Gold; Jason D. Surratt; John E. Shilling; Joel A. Thornton

With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are subjects of intense research because particles affect Earths climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2 or more higher than those typically used in coupled chemistry climate models. SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 50 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx-dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the preindustrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest that a more-complex representation of NOx-dependent SOA yields may be important in models.


Journal of Physical Chemistry A | 2016

Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization.

Siddharth Iyer; Felipe D. Lopez-Hilfiker; Ben H. Lee; Joel A. Thornton; Theo Kurtén

Iodide-based chemical ionization mass spectrometry (CIMS) has been used to detect and measure concentrations of several atmospherically relevant organic and inorganic compounds. The significant electronegativity of iodide and the strong acidity of hydroiodic acid makes electron transfer and proton abstraction essentially negligible, and the soft nature of the adduct formation ionization technique reduces the chances of sample fragmentation. In addition, iodide has a large negative mass defect, which, when combined with the high resolving power of a high resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), provides good selectivity. In this work, we use quantum chemical methods to calculate the binding energies, enthalpies and free energies for clusters of an iodide ion with a number of atmospherically relevant organic and inorganic compounds. Systematic configurational sampling of the free molecules and clusters was carried out at the B3LYP/6-31G* level, followed by subsequent calculations at the PBE/SDD and DLPNO-CCSD(T)/def2-QZVPP//PBE/aug-cc-pVTZ-PP levels. The binding energies, enthalpies, and free energies thus obtained were then compared to the iodide-based University of Washington HR-ToF-CIMS (UW-CIMS) instrument sensitivities for these molecules. We observed a reasonably linear relationship between the cluster binding enthalpies and logarithmic instrument sensitivities already at the PBE/SDD level, which indicates that relatively simple quantum chemical methods can predict the sensitivity of an iodide-based CIMS instrument toward most molecules. However, higher level calculations were needed to treat some outlier molecules, most notably oxalic acid and methylerythritol. Our calculations also corroborated the recent experimental findings that the molecules that the UW-CIMS detects at maximum sensitivity usually have binding enthalpies to iodide which are higher than about 26 kcal/mol, depending slightly on the level of theory.


Journal of Geophysical Research | 2016

Enhanced formation of isoprene‐derived organic aerosol in sulfur‐rich power plant plumes during Southeast Nexus

Lu Xu; Ann M. Middlebrook; Jin Liao; Joost A. de Gouw; Hongyu Guo; Rodney J. Weber; Athanasios Nenes; Felipe D. Lopez-Hilfiker; Ben H. Lee; Joel A. Thornton; C. A. Brock; J. Andrew Neuman; J. B. Nowak; Ilana B. Pollack; André Welti; Martin Graus; Carsten Warneke; Nga L. Ng

We investigate the effects of anthropogenic sulfate on secondary organic aerosol (SOA) formation from biogenic isoprene through airborne measurements in the southeastern United States as part of the Southeast Nexus (SENEX) field campaign. In a flight over Georgia, organic aerosol (OA) is enhanced downwind of the Harllee Branch power plant, but not the Scherer power plant. We find that the OA enhancement is likely caused by the rapid reactive uptake of isoprene epoxydiols (IEPOX) in the sulfate-rich plume of Harllee Branch, which was emitting at least three times more sulfur dioxide (SO2) than Scherer and more aerosol sulfate was produced downwind. The contrast in the evolution of isoprene-derived OA concentration between two power plants with different SO2 emissions provides an opportunity to investigate the magnitude and mechanisms of particle sulfate on isoprene-derived OA formation. We estimate that 1 µg sm-3 reduction of sulfate would decrease the isoprene-derived OA by 0.23 ± 0.08 µg sm-3. Based on a parameterization of the IEPOX heterogeneous reactions, we find that the effects of sulfate on isoprene-derived OA formation in the power plant plume arises from enhanced particle surface area and particle acidity, which increases both IEPOX uptake to particles and subsequent aqueous-phase reactions, respectively. The observed relationships between isoprene-OA, sulfate, particle pH, and particle water in previous field studies are explained using these findings.

Collaboration


Dive into the Felipe D. Lopez-Hilfiker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben H. Lee

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Claudia Mohr

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Pedro Campuzano-Jost

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Steven S. Brown

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

R. C. Cohen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas A. Day

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Hongyu Guo

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge