Felipe Dal-Pizzol
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Felipe Dal-Pizzol.
Critical Care Medicine | 2004
Cristiane Ritter; Michael Everton Andrades; Adalisa Reinke; Sérgio Saldanha Menna-Barreto; José Cláudio Fonseca Moreira; Felipe Dal-Pizzol
ObjectiveOxidative stress plays an important role in the development of multiple organ failure and septic shock. Here we have evaluated the effects of a combination of antioxidants (N-acetylcysteine plus deferoxamine) in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). DesignProspective, randomized, controlled experiment. SettingAnimal basic science laboratory. SubjectsMale Wistar rats, weighing 300–350 g. InterventionsRats subjected to CLP were treated with either N-acetylcysteine (20 mg/kg, 3 hrs, 6 hrs, 12 hrs, 18 hrs, and 24 hrs after CLP, subcutaneously) plus deferoxamine (20 mg/kg, 3 hrs and 24 hrs after CLP, subcutaneously) or vehicle with or without “basic support” (saline at 50 mL/kg immediately and 12 hrs after CLP plus ceftriaxone at 30 mg/kg and clindamycin 25 mg/kg every 6 hrs). Measurements and Main ResultsAfter 12 hrs, tissue myeloperoxidase (indicator of neutrophil infiltration), thiobarbituric acid reactive species (as a marker of oxidative stress), catalase and superoxide dismutase activities (antioxidant enzymes), and mitochondrial superoxide production (index of uncoupling of electron transfer chain) were measured in major organs involved in septic response. Rats treated with antioxidants had significantly lower myeloperoxidase activity and thiobarbituric acid reactive species formation in all organs studied. Mitochondrial superoxide production was significantly reduced by antioxidant treatment. Furthermore, antioxidants significantly improved the balance between catalase and superoxide dismutase activities. Survival in untreated septic rats was 10%. Survival increased to 40% with fluids and antibiotics. In rats treated only with N-acetylcysteine plus deferoxamine, survival was also significantly improved (47%) in a manner similar to basic support. Survival increased to 66% with basic support with N-acetylcysteine plus deferoxamine. ConclusionsOur data provide the first experimental demonstration that N-acetylcysteine plus deferoxamine reduces the consequences of septic shock induced by CLP in the rat, by decreasing oxidative stress and limiting neutrophil infiltration and mitochondrial dysfunction, thereby improving survival.
Neuroscience Letters | 2000
Felipe Dal-Pizzol; Fábio Klamt; Vianna M; Nádia Schröder; João Quevedo; Mara da Silveira Benfato; José Cláudio Fonseca Moreira; Roger Walz
Oxidative stress has been implicated in a variety of acute and chronic neurologic conditions, including epilepsy. Both the kainic acid and pilocarpine are useful models of temporal lobe epilepsy in rodents. As an index of lipid peroxidation the level thiobarbituric acid reactive substances (TBARS) was measured after the status epileticus induced by pilocarpine or kainic acid. In hippocampus there was a slight enhancement in the TBARS levels measured 12-14 h after the end of status epileticus induced by pilocarpine and kainic acid. The TBARS levels in pilocarpine treated animals was significantly decreased late after status epileticus and in kainic acid model the TBARS returned to basal levels. These results indicating a putative role of reactive oxygen species in kainic acid and pilocarpine induced epilepsy.
Free Radical Research | 2001
Felipe Dal-Pizzol; Fábio Klamt; Mara da Silveira Benfato; Elena Aida Bernard; José Cláudio Fonseca Moreira
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.
Neuroscience | 2007
C. Pietá Dias; M.N. Martins de Lima; Juliana Presti-Torres; Arethuza Dornelles; Vanessa Athaíde Garcia; F. Siciliani Scalco; M. Rewsaat Guimarães; Luís Constantino; Patrícia Budni; Felipe Dal-Pizzol; Nadja Schröder
Many neurodegenerative diseases, including Alzheimers (AD), Parkinsons (PD) and Huntingtons diseases (HD), are caused by different mechanisms but may share a common pathway to neuronal injury as a result of the overstimulation of glutamate receptors. It has been suggested that this pathway can be involved in generation of cognitive deficits associated with normal aging. Previous studies performed in our laboratory have demonstrated that aged rats presented recognition memory deficits. The aim of the present study was to evaluate the effect of memantine, a low-affinity N-methyl-D-aspartate (NMDA) receptor antagonist, on age-induced recognition memory deficits. Additionally, parameters of oxidative damage in cerebral regions related to memory formation were evaluated. In order to do that, male Wistar rats (24 months old) received daily injections of saline solution or memantine (20 mg/kg i.p.) during 21 days. The animals were submitted to a novel object recognition task 1 week after the last injection. Memantine-treated rats showed normal recognition memory while the saline group showed long-term recognition memory deficits. The results show that memantine is able to reverse age-induced recognition memory deficits. We also demonstrated that memantine reduced the oxidative damage to proteins in cortex and hippocampus, two important brain regions involved in memory formation. Thus, the present findings suggest that, at least in part, age-induced cognitive deficits are related to oxidative damage promoted by NMDA receptor overactivation.
Cell Biology International | 2006
Ricardo A. Pinho; Michael Everton Andrades; Marcos Roberto de Oliveira; Aline C. Pirola; Morgana S. Zago; Paulo Cesar Lock Silveira; Felipe Dal-Pizzol; José Cláudio Fonseca Moreira
The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8–12 months) were randomly separated into two groups (trained n = 9 and untrained n = 6). Trained rats were treadmill‐trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non‐described adaptation of skeletal muscle against exercise‐induced oxidative stress.
Pharmacology, Biochemistry and Behavior | 2004
Manuela Polydoro; Nadja Schröder; Maria Noêmia Martins de Lima; Fábio Caldana; Daniela C. Laranja; Elke Bromberg; Rafael Roesler; João Quevedo; José Cláudio Fonseca Moreira; Felipe Dal-Pizzol
Haloperidol (HAL) is a typical neuroleptic that acts primarily as a D2 dopamine receptor antagonist. It has been proposed that reactive oxygen species play a causative role in neurotoxic effects induced by HAL. Adult male Wistar rats received daily injections of HAL (1.5 mg/kg) or clozapine (CLO, 25 mg/kg), an atypical neuroleptic, for 28 days. Control animals were given saline (SAL; NaCl 0.9%). Oxidative parameters in the brain were measured in the striatum (ST), hippocampus (HP) and cortex (CX). Thiobarbituric acid (TBA) reactive substances (TBAR) levels were increased by HAL treatment in the ST and decreased in CX of both of the HAL- and CLO-treated rats. Protein carbonyls were significantly increased by both HAL and CLO in the HP. The nonenzymatic antioxidant potential was decreased in the HP, and superoxide production was significantly increased in the ST following treatment with HAL. CLO induced an increase in superoxide production in the HP. Neither HAL nor CLO affected catalase (CAT) and superoxide dismutase (SOD) activities. The findings suggest that HAL and CLO can induce oxidative damage to the ST and HP in rats.
Neurochemical Research | 2010
Amanda V. Steckert; Samira S. Valvassori; Morgana Moretti; Felipe Dal-Pizzol; João Quevedo
In this work, we review the studies of oxidative stress markers, showing association with the pathophysiology of bipolar disorder (BD). BD is a prevalent, chronic and highly disabling psychiatric disorder. Several hypotheses have been postulated to explain the exact neurochemical mechanisms underlying the pathophysiology of BD, including a role for monoamines, gamma-amino butyric acid (GABA), glutamate, and second messenger singling pathways. More recently, oxidative stress has been implicated in the pathogenesis of BD. Recent studies have reported increased products of lipid peroxidation and alterations of the major antioxidants enzymes in patients with BD. It has been widely demonstrated that the generation of reactive oxygen species (ROS) plays a critical role in the pathophysiology of several neuropsychiatric disorders, such BD.
Critical Care Medicine | 2004
Cristiane Ritter; Adalisa Reinke; Michael Everton Andrades; Márcio R. Martins; João Rocha; Sérgio Saldanha Menna-Barreto; João Quevedo; José Cláudio Fonseca Moreira; Felipe Dal-Pizzol
Objective:Carbon tetrachloride (CCl4) is a lipid-soluble potent hepatotoxic; thus, it widely is used as an animal model of severe hepatic failure. Treatment with antioxidants may modulate the toxic effects of CCl4 on liver, generally with drug administration before CCl4, which can restrict its use in the clinical setting. We here describe the effects of N-acetylcysteine, deferoxamine, or both in the treatment of CCl4-induced hepatic failure. Design:Prospective, randomized, controlled experiment. Setting:Animal basic science laboratory. Subjects:Male Wistar rats, weighing 200–250 g. Interventions:Rats exposed to CCl4 were treated with N-acetylcysteine and/or deferoxamine or vehicle. Measurements and Main Results:N-acetylcysteine plus deferoxamine treatment significantly attenuated hepatic and central nervous system oxidative damage after acute hepatic failure induced by CCl4. In addition, the serum levels of alanine aminotransferase, total bilirubin, and prothrombin time in the N-acetylcysteine plus deferoxamine group were significantly lower than those in the N-acetylcysteine or deferoxamine and saline groups. After N-acetylcysteine plus deferoxamine treatment, hepatocellular necrosis and inflammatory infiltration induced by carbon tetrachloride were greatly decreased. Survival in untreated rats was 5%. Survival increased to 25% and 35%, respectively, with N-acetylcysteine and deferoxamine treatment. In rats treated with N-acetylcysteine plus deferoxamine, survival was 80%. Conclusions:Our data provide the first experimental demonstration that N-acetylcysteine plus deferoxamine reduces mortality rate, decreases oxidative stress, and limits inflammatory infiltration and hepatocyte necrosis induced by CCl4 in the rat.
Journal of Gastroenterology and Hepatology | 2007
Carlos R. Damiani; César A. F. Benetton; Cristhopher Stoffel; Katrine Bardini; Vilson H Cardoso; Gabriela Di Giunta; Ricardo A. Pinho; Felipe Dal-Pizzol; Emilio L. Streck
Background and Aim: Ulcerative colitis is a chronic inflammatory disease of the gastrointestinal tract. Its etiology remains unclear, but it appears to result from a dysregulated immune response, with infiltration of phagocytic leukocytes into the mucosal interstitium. The production and release of reactive oxygen species by immune cells seems to play a crucial role in physiopathology of colitis. The aim of this work was to evaluate the effects of N‐acetylcysteine (NAC) and deferoxamine (DFX) in the treatment of colitis induced by dextran sulfate sodium (DSS).
European Journal of Neuroscience | 2005
Maria Noêmia Martins de Lima; Manuela Polydoro; Daniela C. Laranja; Fernanda Bonatto; Elke Bromberg; José Cláudio Fonseca Moreira; Felipe Dal-Pizzol; Nadja Schröder
Iron accumulation in the brain has been implicated in the pathogenesis of neurodegenerative disorders. It is known that iron catalyses the formation of highly reactive hydroxyl radicals. Recent studies have implicated oxidative damage in memory deficits in rats and humans. The purpose of the present study was to investigate the long‐term effects of iron treatment in four different phases of the neonatal period on recognition memory in rats. Additionally, parameters of oxidative stress in cerebral regions related to memory formation were evaluated. Male Wistar rats received vehicle or 10.0 mg/kg of Fe2+ orally at postnatal days 5–7, 12–14, 19–21 or 30–32. Animals given iron at any phase of the neonatal period showed impairments in long‐term retention of object recognition memory, although only the group given iron from postnatal days 12–14 showed a complete memory blockade. Iron treatment induced oxidative damage in the brain as assessed by the thiobarbituric acid reactive species assay. Moreover, iron administration increased superoxide production in submitochondrial particles, suggesting impaired mitochondrial function; and there was an increase in superoxide dismutase activity in brain regions susceptible to iron administration. The results show that iron load in the early stages of life induces cognitive impairment possibly by inducing oxidative damage in the brain. These findings are consistent with the view that oxidative stress may be related to the cognitive decline observed in normal ageing.