Felipe de la Parra
Ecopetrol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Felipe de la Parra.
Science | 2010
Carlos Jaramillo; Diana Ochoa; Lineth Contreras; Mark Pagani; Humberto Carvajal-Ortiz; Lisa M. Pratt; Srinath Krishnan; Agustín Cardona; Millerlandy Romero; Luis Quiroz; Guillermo Rodriguez; Milton Rueda; Felipe de la Parra; Sara Morón; Walton Green; Germán Bayona; Camilo Montes; Oscar Quintero; Rafael Ramirez; Germán Mora; Stefan Schouten; Hermann Bermudez; Rosa Navarrete; Francisco Parra; Mauricio Alvarán; Jose Osorno; James L. Crowley; Victor A. Valencia; Jeffrey D. Vervoort
Hot Tropical Explosion The Paleocene-Eocene Thermal Maximum (PETM), 55 million years ago, was a unique episode of rapid global warming (∼5°C), often used as an ancient analog for future global climate change. Climate alteration during the PETM has been extensively studied in the marine realm, and from a few temperate to polar terrestrial localities, but little is known about how the tropics responded to the high temperatures and high levels of CO2. Using evidence from pollen analysis, Jaramillo et al. (p. 957) show that rapid tropical forest diversification occurred during the PETM, without plant extinction or regional aridity. Unexpectedly, diversity seemed to increase at higher temperatures, contradicting previous assumptions that tropical flora will succumb if temperatures become excessive. Palynology shows that tropical forests persisted under conditions of rapid climate warming 55 million years ago. Temperatures in tropical regions are estimated to have increased by 3° to 5°C, compared with Late Paleocene values, during the Paleocene-Eocene Thermal Maximum (PETM, 56.3 million years ago) event. We investigated the tropical forest response to this rapid warming by evaluating the palynological record of three stratigraphic sections in eastern Colombia and western Venezuela. We observed a rapid and distinct increase in plant diversity and origination rates, with a set of new taxa, mostly angiosperms, added to the existing stock of low-diversity Paleocene flora. There is no evidence for enhanced aridity in the northern Neotropics. The tropical rainforest was able to persist under elevated temperatures and high levels of atmospheric carbon dioxide, in contrast to speculations that tropical ecosystems were severely compromised by heat stress.
AAPG Bulletin | 2015
Andrés Reyes-Harker; Carlos Fernando Ruiz-Valdivieso; Andrés Mora; Juan Carlos Ramírez-Arias; Guillermo Rodriguez; Felipe de la Parra; Victor Caballero; Mauricio Parra; Nestor Moreno; Brian K. Horton; Joel E. Saylor; Alejandro Silva; Victor A. Valencia; Daniel F. Stockli; Vladimir Blanco
New biostratigraphic zonations, core descriptions, sandstone petrography, facies analysis, and seismic information are compared with published detrital and bedrock geo- and thermochronology to build a Cenozoic paleogeographic reconstruction of the Andean retroarc region of Colombia, encompassing the ancestral Central Cordillera, Middle Magdalena Valley, Eastern Cordillera, and Llanos basin. We identify uplifted sediment source areas, provenance domains, depositional environments, and thickness changes to propose a refined paleogeographic evolution of eastern Colombia. We conclude that Cenozoic evolution of the northernmost Andes includes (1) a period of contractional deformation focused in the Central Cordillera and Middle Magdalena Valley that may have started by the Late Cretaceous, although thermochronological data points to maximum shortening and exhumation during the late Paleocene; (2) a period of slower deformation rates or even tectonic quiescence during the middle Eocene; and (3) a renewed phase of contractional deformation from the late Eocene to the Pleistocene/Holocene expressed in provenance, bedrock thermochronology, and increased subsidence rates in the Llanos foreland. The sedimentary response in the Llanos foreland basin is controlled by source area proximity, exhumation and shortening rates, relationships between accommodation and sediment supply, as well as potential paleoclimate forcing. This new reconstruction changes the picture of Cenozoic basin evolution offered by previous reconstructions, providing an updated chronology of deformation, which is tied to a more precise understanding of basin evolution.
AAPG Bulletin | 2015
Felipe de la Parra; Andrés Mora; Milton Rueda; Isaid Quintero
In Colombia, palynology has been widely used as a biostratigraphic tool in oil exploration over the last two decades and, as a result of these efforts, an understanding of the chronostratigraphic range of thousands of palynomorph species is now available. Furthermore, because of their relative resistance to physical and chemical degradation, palynomorphs can often survive several tectonic-erosive cycles, allowing them to be used as unique tracers of long-term sedimentological changes. In this work, we use the palynological record from wells and outcrops in the Llanos foothills and the Llanos basin of Colombia to establish the intensity of Cenozoic reworking and its relationship to the tectonic evolution of the Colombian Andes. Using this approach, we were able to discern several tectonic episodes associated with the uplift of the Eastern Cordillera. We documented three periods of either faster erosion in the hinterland or more widespread areas being eroded in the catchment areas (late Paleocene–early Eocene, early to mid Miocene and Pliocene) and two periods of tectonic quiescence (mid-Eocene and mid–late Miocene). These periods correlate well with the deposition of different elements of the petroleum systems in the Llanos basin of Colombia (seals and reservoirs).
AAPG Bulletin | 2012
Surangi W. Punyasena; Carlos Jaramillo; Felipe de la Parra; Yuelin Du
Existing quantitative methods for biostratigraphic dating and correlation commonly ignore one of the key strengths of the microfossil record—relative abundance data. In this study, we present a maximum likelihood-based biostratigraphic method that demonstrates how microfossil abundance can be used in the stratigraphic placement of isolated samples. Precise correlation and dating of isolated paleontological samples is not possible with current methods, which are primarily intended for the alignment of longer stratigraphic sequences. In contrast, the probabilistic approach provided by likelihood analysis results in sample age estimates with defined confidence intervals. Therefore, all the uncertainties inherent in our age assessment (resulting from small sample sizes, incomplete sampling, imperfect knowledge of stratigraphic distributions, lack of taxonomic resolution of biostratigraphic data, and underlying environmental, paleogeographic, and sedimentologic processes) are explicit in our results. We conclude with a field test of the method, from data collected from an oil well from the Catatumbo Basin, Colombia, illustrating the use of our approach in a real-world case study and highlighting how our method could be generalized to a wide range of stratigraphic problems.
AAPG Bulletin | 2015
Andrés Reyes-Harker; Carlos Fernando Ruiz-Valdivieso; Andrés Mora; Juan Carlos Ramírez-Arias; Guillermo Rodriguez; Felipe de la Parra; Victor Caballero; Mauricio Parra; Nestor Moreno; Brian K. Horton; Joel E. Saylor; Alejandro Silva; Victor A. Valencia; Daniel F. Stockli; Vladimir Blanco
New biostratigraphic zonations, core descriptions, sandstone petrography, facies analysis, and seismic information are compared with published detrital and bedrock geo- and thermochronology to build a Cenozoic paleogeographic reconstruction of the Andean retroarc region of Colombia, encompassing the ancestral Central Cordillera, Middle Magdalena Valley, Eastern Cordillera, and Llanos basin. We identify uplifted sediment source areas, provenance domains, depositional environments, and thickness changes to propose a refined paleogeographic evolution of eastern Colombia. We conclude that Cenozoic evolution of the northernmost Andes includes (1) a period of contractional deformation focused in the Central Cordillera and Middle Magdalena Valley that may have started by the Late Cretaceous, although thermochronological data points to maximum shortening and exhumation during the late Paleocene; (2) a period of slower deformation rates or even tectonic quiescence during the middle Eocene; and (3) a renewed phase of contractional deformation from the late Eocene to the Pleistocene/Holocene expressed in provenance, bedrock thermochronology, and increased subsidence rates in the Llanos foreland. The sedimentary response in the Llanos foreland basin is controlled by source area proximity, exhumation and shortening rates, relationships between accommodation and sediment supply, as well as potential paleoclimate forcing. This new reconstruction changes the picture of Cenozoic basin evolution offered by previous reconstructions, providing an updated chronology of deformation, which is tied to a more precise understanding of basin evolution.
AAPG Bulletin | 2015
Andrés Reyes-Harker; Carlos Fernando Ruiz-Valdivieso; Andrés Mora; Juan Carlos Ramírez-Arias; Guillermo Rodriguez; Felipe de la Parra; Victor Caballero; Mauricio Parra; Nestor Moreno; Brian K. Horton; Joel E. Saylor; Alejandro Silva; Victor A. Valencia; Daniel F. Stockli; Vladimir Blanco
New biostratigraphic zonations, core descriptions, sandstone petrography, facies analysis, and seismic information are compared with published detrital and bedrock geo- and thermochronology to build a Cenozoic paleogeographic reconstruction of the Andean retroarc region of Colombia, encompassing the ancestral Central Cordillera, Middle Magdalena Valley, Eastern Cordillera, and Llanos basin. We identify uplifted sediment source areas, provenance domains, depositional environments, and thickness changes to propose a refined paleogeographic evolution of eastern Colombia. We conclude that Cenozoic evolution of the northernmost Andes includes (1) a period of contractional deformation focused in the Central Cordillera and Middle Magdalena Valley that may have started by the Late Cretaceous, although thermochronological data points to maximum shortening and exhumation during the late Paleocene; (2) a period of slower deformation rates or even tectonic quiescence during the middle Eocene; and (3) a renewed phase of contractional deformation from the late Eocene to the Pleistocene/Holocene expressed in provenance, bedrock thermochronology, and increased subsidence rates in the Llanos foreland. The sedimentary response in the Llanos foreland basin is controlled by source area proximity, exhumation and shortening rates, relationships between accommodation and sediment supply, as well as potential paleoclimate forcing. This new reconstruction changes the picture of Cenozoic basin evolution offered by previous reconstructions, providing an updated chronology of deformation, which is tied to a more precise understanding of basin evolution.
Archive | 2005
Carlos Jaramillo; Fernando Munoz; Magda Cogollo; Felipe de la Parra
Archive | 2010
Lineth Contreras; Guillermo Rodriguez; Milton Rueda; Giovani Bedoya; Carlos Santo; Felipe de la Parra
Lethaia | 2016
Martin Smith; Gareth M. G. Hughes; María Carolina Vargas; Felipe de la Parra
Boletin de Geología | 2016
Paola Montaño; Giovanny Nova; Germán Bayona; Hernando Mahecha; Carolina Ayala; Carlos Jaramillo; Felipe de la Parra