Felipe Gómez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Felipe Gómez.
Applied and Environmental Microbiology | 2006
Angeles Aguilera; Susanna C. Manrubia; Felipe Gómez; Nuria Rodríguez; Ricardo Amils
ABSTRACT The correlation between water physicochemical parameters and eukaryotic benthic composition was examined in Río Tinto. Principal component analysis showed a high inverse relationship between pH and most of the heavy metals analyzed as well as Dunaliella sp., while Chlamydomonas sp. abundance was positively related. Zn, Cu, and Ni clustered together and showed a strong inverse correlation with the diversity coefficient and most of the species analyzed. These eukaryotic communities seem to be more influenced by the presence of heavy metals than by the pH.
Journal of Geophysical Research | 2014
Javier Gómez-Elvira; Carlos Armiens; Isaías Carrasco; Maria Genzer; Felipe Gómez; Robert M. Haberle; Victoria E. Hamilton; A.-M. Harri; Henrik Kahanpää; Osku Kemppinen; A. Lepinette; Javier Martín Soler; Javier Martin-Torres; J. Martínez-Frías; Michael A. Mischna; Luis Mora; Sara Navarro; Claire E. Newman; Miguel Angel de Pablo; V. Peinado; Jouni Polkko; Scot C. Randell Rafkin; Miguel Ramos; Nilton De Oliveira Renno; Mark I. Richardson; J. A. Rodriguez-Manfredi; Julio J. Romeral Planellõ; Eduardo Sebastián; Manuel de la Torre Juárez; Josefina Torres
In the first 100 Martian solar days (sols) of the Mars Science Laboratory mission, the Rover Environmental Monitoring Station (REMS) measured the seasonally evolving diurnal cycles of ultraviolet radiation, atmospheric pressure, air temperature, ground temperature, relative humidity, and wind within Gale Crater on Mars. As an introduction to several REMS-based articles in this issue, we provide an overview of the design and performance of the REMS sensors and discuss our approach to mitigating some of the difficulties we encountered following landing, including the loss of one of the two wind sensors. We discuss the REMS data set in the context of other Mars Science Laboratory instruments and observations and describe how an enhanced observing strategy greatly increased the amount of REMS data returned in the first 100 sols, providing complete coverage of the diurnal cycle every 4 to 6 sols. Finally, we provide a brief overview of key science results from the first 100 sols. We found Gale to be very dry, never reaching saturation relative humidities, subject to larger diurnal surface pressure variations than seen by any previous lander on Mars, air temperatures consistent with model predictions and abundant short timescale variability, and surface temperatures responsive to changes in surface properties and suggestive of subsurface layering.
Hydrometallurgy | 2003
Elena González-Toril; Felipe Gómez; Nuria Rodríguez; David Carlos Fernandez-Remolar; J Zuluaga; I. Marín; Ricardo Amils
The Tinto River (Huelva, southwestern Spain) is an extreme environment with a constant acidic pH (mean 2.3), a high concentration of heavy metals and a remarkable level of microbial diversity (bacteria, archaea, photosynthetic and heterotrophic protists, yeast and filamentous fungi). The extreme conditions found in the river are the direct consequence of the active metabolism of chemolithotrophic microorganisms thriving in the rich polymetallic sulfides present in high concentrations in the Iberian Pyritic Belt. Primary production in the river is driven mainly by oxygenic photosynthesis (protists and cyanobacteria), although an important part is also due to the activity of chemolithotrophic prokaryotes. Conventional and molecular ecology techniques were used to study the microbial ecology of the Tinto system. The results of both methods agreed. Although sulfur metabolism plays an important role in the system, iron seems to be the key element in this habitat. Iron is not only an important substrate for the rich population of iron oxidizing prokaryotes, but also an electron acceptor for anaerobic respiration in the anoxic parts of the river. It is also responsible for the maintenance of a constant acidic pH (probably critical for biodiversity) and for radiation protection. Laminar iron stromatolitic formations can be found along the river. These structures are related to massive laminated bioinduced iron formations found at different elevations above the current river. The isotopic dating of these formations leads to the conclusion that the Tinto River corresponds to a natural system and not to an industrial, contaminated site. A geomicrobiological model of this habitat encompassing most of the geological, physical, chemical and biological variables is presented and its biohydrometallurgical implications discussed.
Astrobiology | 2008
David Carlos Fernandez-Remolar; Olga Prieto-Ballesteros; Nuria Rodríguez; Felipe Gómez; Ricardo Amils; Javier Gómez-Elvira; Carol R. Stoker
A search for evidence of cryptic life in the subsurface region of a fractured Paleozoic volcanosedimentary deposit near the source waters of the Río Tinto River (Iberian pyrite belt, southwest Spain) was carried out by Mars Astrobiology Research and Technology Experiment (MARTE) project investigators in 2003 and 2004. This conventional deep-drilling experiment is referred to as the MARTE ground truth drilling project. Boreholes were drilled at three sites, and samples from extracted cores were analyzed with light microscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. Core leachates were analyzed with ion chromatography, and borehole fluids were analyzed with ion and gas chromatography. Key variables of the groundwater system (e.g., pO(2), pH, and salinity) exhibit huge ranges probably due to surficial oxygenation of overall reducing waters, physical mixing of waters, and biologically mediated water-rock interactions. Mineral distribution is mainly driven by the pH of subsurface solutions, which range from highly acidic to neutral. Borehole fluids contain dissolved gases such as CO(2), CH(4), and H(2). SEM-EDS analyses of core samples revealed evidence of microbes attacking pyrite. The Río Tinto alteration mechanisms may be similar to subsurface weathering of the martian crust and provide insights into the possible (bio)geochemical cycles that may have accompanied underground habitats in extensive early Mars volcanic regions and associated sulfide ores.
Astrobiology | 2011
Victor Parro; Graciela de Diego-Castilla; Mercedes Moreno-Paz; Yolanda Blanco; Patricia Cruz-Gil; J. A. Rodriguez-Manfredi; David Carlos Fernandez-Remolar; Felipe Gómez; Manuel J. Gómez; Luis Rivas; Cecilia Demergasso; Alex Echeverría; Viviana Urtuvia; Marta Ruiz-Bermejo; Miriam García-Villadangos; Marina Postigo; Mónica Sánchez-Román; G. Chong-Diaz; Javier Gómez-Elvira
The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg(-1)) and perchlorate (41.13 μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 μg g(-1)) or formate (76.06 μg g(-1)) as electron donors, and sulfate (15875 μg g(-1)), nitrate (13490 μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.
Astrobiology | 2016
Gerda Horneck; Nicolas Walter; Frances Westall; John Lee Grenfell; William Martin; Felipe Gómez; Stefan Leuko; Natuschka Lee; Silvano Onofri; Kleomenis Tsiganis; Raffaele Saladino; Elke Pilat-Lohinger; E. Palomba; Jesse P. Harrison; Fernando Rull; Christian Muller; G. Strazzulla; John Robert Brucato; Petra Rettberg; M. T. Capria
Abstract The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems • Research Topic 2: Origins of Organic Compounds in Space • Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life • Research Topic 4: Life and Habitability • Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system. Key Words: Astrobiology roadmap—Europe—Origin and evolution of life—Habitability—Life detection—Life in extreme environments. Astrobiology 16, 201–243.
Astrobiology | 2008
David Carlos Fernandez-Remolar; Felipe Gómez; Olga Prieto-Ballesteros; Rachel T. Schelble; Nuria Rodríguez; Ricardo Amils
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Archive | 2008
Ricardo Amils; David Carlos Fernandez-Remolar; Felipe Gómez; Elena González-Toril; Nuria Rodríguez; Carlos Briones; Olga Prieto-Ballesteros; J. L. Sanz; Emiliano Díaz; Todd Stevens; Carol R. Stoker
Terrestrial subsurface geomicrobiology is a matter of growing interest. On a fundamental level, it seeks to determine whether life can be sustained in the absence of radiation, whereas it also aims to develop practical applications in environmental biotechnology. Subsurface ecosystems are also intriguing exobiological models , useful for the re-creation of life on early Earth (Widdel et al. 1993) or the representation of life as it would occur in other planetary bodies (Boston et al. 1992). Subsurface ecosystems were originally reported in basalt aquifers (Stevens and McKinley 1995; Chapelle et al. 2002) and later in sedimentary aquifers, petroleum reservoirs, and alkaline and saline goldmine groundwater (Lin et al. 2006). Results obtained by deep-sea subsurface exploration initiatives are widening the scope of our knowledge in this field (D’Hondt et al. 2004). In this field there is a serious debate on whether the source of electron donors and/or acceptors is dependent on radiation-mediated reactions and also on contamination problems associated with drilling technologies, their mitigation, and control. In spite of the interest of subsurface ecosystems, information concerning microbial abundance, diversity, and sustainability is still scarce, mainly due to methodological limitations. Among the different minerals, the metallic sulfides have the potential to be a good source of energy for subsurface chemolithotrophs . The micro-organisms that aerobically oxidize iron sulfides are well characterized (Gonzalez-Toril et al. 2003), however, little is known about the possibility of subsurface chemolithoautotrophic metabolism in anoxic conditions. The Mars Analog Research and Technology Experiment (MARTE) project (Stoker et al. 2004; Fernandez-Remolar et al. 2005a) outlined in this chapter was designed to search for this type of life in the nonporous volcanically hosted massive sulfide deposits (VHMS) of the Rio Tinto basement at Pena de Hierro (Iberian Pyritic Belt).
Advanced Materials Research | 2013
Ricardo Amils; David Carlos Fernandez-Remolar; Victor Parro; J. A. Rodriguez-Manfredi; Kenneth N. Timmis; Mónica Oggerin; Mónica Sánchez-Román; Francisco J. López; José Pablo Fernández; Fernando Puente; David Gómez-Ortiz; Carlos Briones; Felipe Gómez; Enoma O. Omoregie; M. Garcia; Nuria Rodríguez; José Luis Sanz
The geomicrobiological characterization of Río Tinto, an extreme acidic environment, has proven the importance of the iron cycle, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals) but also in maintaining the high level of microbial diversity detected in the water column and the sediments. The extreme conditions detected in the Tinto basin are not the product of industrial contamination but the consequence of the presence of an underground bioreactor that obtains its energy from the massive sulfide minerals of the Iberian Pyrite Belt (IPB). To test this hypothesis, a drilling project (IPBSL) to intersect ground waters interacting with the mineral ore is under way, to provide evidence of subsurface microbial activities. A dedicated geophysical characterization of the area selected two drilling sites due to the possible existence of water with high ionic content. Two wells have been drilled in Peña de Hierro, BH11 and BH10, with depths of 340 and 630 meters respectively, with recovery of cores and generation of samples in anaerobic and sterile conditions. The geological analysis of the retrieved cores showed an important alteration of mineral structures associated with the presence of water, with production of expected products from the bacterial oxidation of pyrite. Ion chromatography of water soluble compounds from uncontaminated samples showed the existence of putative electron donors, electron acceptors, as well as variable concentration of metabolic organic acids, which suggest the presence of an active subsurface ecosystem associated to the high sulfidic mineral content of the IPB. Enrichment cultures from selected samples showed evidences of an active iron and sulfur cycle, together with unexpected methanogenic, methanotrophic and acetogenic activities. The geological, geomicrobiological and molecular biology analyses which are under way, should allow the characterization of this ecosystem of biohydrometallurgical interest
Applied Microbiology and Biotechnology | 1999
Felipe Gómez; Ricardo Amils; I. Marín
Abstract The microbial ecology of different Spanish coal samples has been studied. Several bacteria have been isolated from enrichment cultures and characterised and their biodesulphurization abilities evaluated. Using morphological and physiological properties, different isolates have been related to species of the Xanthomonas, Pseudomonas, Chryseomonas and Moraxella genera. Some of the isolates, B(30)15 and T(30)10, gave important levels of organic desulphurization, close to 70%. Other isolates, B(30)7 and B(30)8, were able to remove inorganic sulphur with high efficiencies, over 67%. One of the isolates, B(30)10, metabolically related to Xanthomonas maltophila, was able to remove both organic and inorganic sulphur at neutral pH, with efficiencies of 69% and 68% respectively. The results obtained underline the potential use of some of these strains for industrial coal desulphurization processes.