Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felipe J. Colón-González is active.

Publication


Featured researches published by Felipe J. Colón-González.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Multimodel assessment of water scarcity under climate change

Jacob Schewe; Jens Heinke; Dieter Gerten; Ingjerd Haddeland; Nigel W. Arnell; Douglas B. Clark; Rutger Dankers; Stephanie Eisner; B M Fekete; Felipe J. Colón-González; Simon N. Gosling; Hyungjun Kim; Xingcai Liu; Yoshimitsu Masaki; Felix T. Portmann; Yusuke Satoh; Tobias Stacke; Qiuhong Tang; Yoshihide Wada; Dominik Wisser; Torsten Albrecht; Katja Frieler; Franziska Piontek; Lila Warszawski; P. Kabat

Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Impact of climate change on global malaria distribution

Cyril Caminade; Sari Kovats; Joacim Rocklöv; Adrian M. Tompkins; Andrew P. Morse; Felipe J. Colón-González; Hans Stenlund; Pim Martens; Simon J. Lloyd

Significance This study is the first multimalaria model intercomparison exercise. This is carried out to estimate the impact of future climate change and population scenarios on malaria transmission at global scale and to provide recommendations for the future. Our results indicate that future climate might become more suitable for malaria transmission in the tropical highland regions. However, other important socioeconomic factors such as land use change, population growth and urbanization, migration changes, and economic development will have to be accounted for in further details for future risk assessments. Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.


PLOS Neglected Tropical Diseases | 2013

The Effects of Weather and Climate Change on Dengue

Felipe J. Colón-González; Carlo Fezzi; Iain R. Lake; Paul R. Hunter

Background There is much uncertainty about the future impact of climate change on vector-borne diseases. Such uncertainty reflects the difficulties in modelling the complex interactions between disease, climatic and socioeconomic determinants. We used a comprehensive panel dataset from Mexico covering 23 years of province-specific dengue reports across nine climatic regions to estimate the impact of weather on dengue, accounting for the effects of non-climatic factors. Methods and Findings Using a Generalized Additive Model, we estimated statistically significant effects of weather and access to piped water on dengue. The effects of weather were highly nonlinear. Minimum temperature (Tmin) had almost no effect on dengue incidence below 5°C, but Tmin values above 18°C showed a rapidly increasing effect. Maximum temperature above 20°C also showed an increasing effect on dengue incidence with a peak around 32°C, after which the effect declined. There is also an increasing effect of precipitation as it rose to about 550 mm, beyond which such effect declines. Rising access to piped water was related to increasing dengue incidence. We used our model estimations to project the potential impact of climate change on dengue incidence under three emission scenarios by 2030, 2050, and 2080. An increase of up to 40% in dengue incidence by 2080 was estimated under climate change while holding the other driving factors constant. Conclusions Our results indicate that weather significantly influences dengue incidence in Mexico and that such relationships are highly nonlinear. These findings highlight the importance of using flexible model specifications when analysing weather–health interactions. Climate change may contribute to an increase in dengue incidence. Rising access to piped water may aggravate dengue incidence if it leads to increased domestic water storage. Climate change may therefore influence the success or failure of future efforts against dengue.


American Journal of Tropical Medicine and Hygiene | 2011

Climate Variability and Dengue Fever in Warm and Humid Mexico

Felipe J. Colón-González; Iain R. Lake; Graham Bentham

Multiple linear regression models were fitted to look for associations between changes in the incidence rate of dengue fever and climate variability in the warm and humid region of Mexico. Data were collected for 12 Mexican provinces over a 23-year period (January 1985 to December 2007). Our results show that the incidence rate or risk of infection is higher during El Niño events and in the warm and wet season. We provide evidence to show that dengue fever incidence was positively associated with the strength of El Niño and the minimum temperature, especially during the cool and dry season. Our study complements the understanding of dengue fever dynamics in the region and may be useful for the development of early warning systems.


PLOS Neglected Tropical Diseases | 2017

After the epidemic: Zika virus projections for Latin America and the Caribbean

Felipe J. Colón-González; Carlos A. Peres; Christine Steiner São Bernardo; Paul R. Hunter; Iain R. Lake

Background Zika is one of the most challenging emergent vector-borne diseases, yet its future public health impact remains unclear. Zika was of little public health concern until recent reports of its association with congenital syndromes. By 3 August 2017 ∼217,000 Zika cases and ∼3,400 cases of associated congenital syndrome were reported in Latin America and the Caribbean. Some modelling exercises suggest that Zika virus infection could become endemic in agreement with recent declarations from the The World Health Organisation. Methodology/Principal findings We produced high-resolution spatially-explicit projections of Zika cases, associated congenital syndromes and monetary costs for Latin America and the Caribbean now that the epidemic phase of the disease appears to be over. In contrast to previous studies which have adopted a modelling approach to map Zika potential, we project case numbers using a statistical approach based upon reported dengue case data as a Zika surrogate. Our results indicate that ∼12.3 (0.7–162.3) million Zika cases could be expected across Latin America and the Caribbean every year, leading to ∼64.4 (0.2–5159.3) thousand cases of Guillain-Barré syndrome and ∼4.7 (0.0–116.3) thousand cases of microcephaly. The economic burden of these neurological sequelae are estimated to be USD ∼2.3 (USD 0–159.3) billion per annum. Conclusions/Significance Zika is likely to have significant public health consequences across Latin America and the Caribbean in years to come. Our projections inform regional and federal health authorities, offering an opportunity to adapt to this public health challenge.


Geospatial Health | 2016

Assessing the effects of air temperature and rainfall on malaria incidence: an epidemiological study across Rwanda and Uganda

Felipe J. Colón-González; Adrian M. Tompkins; Riccardo Biondi; Jean Pierre Bizimana; Didacus Namanya

We investigate the short-term effects of air temperature, rainfall, and socioeconomic indicators on malaria incidence across Rwanda and Uganda from 2002 to 2011. Delayed and nonlinear effects of temperature and rainfall data are estimated using generalised additive mixed models with a distributed lag nonlinear specification. A time series cross-validation algorithm is implemented to select the best subset of socioeconomic predictors and to define the degree of smoothing of the weather variables. Our findings show that trends in malaria incidence agree well with variations in both temperature and rainfall in both countries, although factors other than climate seem to play an important role too. The estimated short-term effects of air temperature and precipitation are nonlinear, in agreement with previous research and the ecology of the disease. These effects are robust to the effects of temporal correlation. The effects of socioeconomic data are difficult to ascertain and require further evaluation with longer time series. Climate-informed models had lower error estimates compared to models with no climatic information in 77 and 60% of the districts in Rwanda and Uganda, respectively. Our results highlight the importance of using climatic information in the analysis of malaria surveillance data, and show potential for the development of climate informed malaria early warning systems.


Public Health Reports | 2017

Developing a Multidisciplinary Syndromic Surveillance Academic Research Program in the United Kingdom: Benefits for Public Health Surveillance:

Alex J. Elliot; Roger Morbey; Obaghe Edeghere; Iain R. Lake; Felipe J. Colón-González; Roberto Vivancos; G James Rubin; Sarah J. O'Brien; Gillian E. Smith

Syndromic surveillance is growing in stature internationally as a recognised and innovative approach to public health surveillance. Syndromic surveillance research uses data captured by syndromic surveillance systems to investigate specific hypotheses or questions. However, this research is often undertaken either within established public health organisations or the academic setting, but often not together. Public health organisations can provide access to health-related data and expertise in infectious and non-infectious disease epidemiology and clinical interpretation of data. Academic institutions can optimise methodological rigour, intellectual clarity and establish routes for applying to external research funding bodies to attract money to fund projects. Together, these competencies can complement each other to enhance the public health benefits of syndromic surveillance research. This paper describes the development of a multidisciplinary syndromic surveillance academic research programme in England, United Kingdom, its aims, goals and benefits to public health.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Limiting global-mean temperature increase to 1.5–2 °C could reduce the incidence and spatial spread of dengue fever in Latin America

Felipe J. Colón-González; Ian Harris; Timothy J. Osborn; Christine Steiner São Bernardo; Carlos A. Peres; Paul R. Hunter; Iain R. Lake

Significance This study is a multigeneral circulation model, multiscenario modeling exercise developed to quantify the dengue-related health benefits of limiting global warming to 1.5–2.0 °C above preindustrial levels in Latin America and the Caribbean. We estimate the impact of future climate change and population growth on the additional number of dengue cases and provide insights about the regions and periods most likely affected by changes in the length of the transmission season. Here, we show that future climate change may amplify dengue transmission and that significant impacts could be avoided by constraining global warming to 1.5 °C above preindustrial levels. Our work could be a starting point for future risk assessments incorporating other important drivers of disease such as urbanization and international traveling. The Paris Climate Agreement aims to hold global-mean temperature well below 2 °C and to pursue efforts to limit it to 1.5 °C above preindustrial levels. While it is recognized that there are benefits for human health in limiting global warming to 1.5 °C, the magnitude with which those societal benefits will be accrued remains unquantified. Crucial to public health preparedness and response is the understanding and quantification of such impacts at different levels of warming. Using dengue in Latin America as a study case, a climate-driven dengue generalized additive mixed model was developed to predict global warming impacts using five different global circulation models, all scaled to represent multiple global-mean temperature assumptions. We show that policies to limit global warming to 2 °C could reduce dengue cases by about 2.8 (0.8–7.4) million cases per year by the end of the century compared with a no-policy scenario that warms by 3.7 °C. Limiting warming further to 1.5 °C produces an additional drop in cases of about 0.5 (0.2–1.1) million per year. Furthermore, we found that by limiting global warming we can limit the expansion of the disease toward areas where incidence is currently low. We anticipate our study to be a starting point for more comprehensive studies incorporating socioeconomic scenarios and how they may further impact dengue incidence. Our results demonstrate that although future climate change may amplify dengue transmission in the region, impacts may be avoided by constraining the level of warming.


PLOS ONE | 2018

The influence of a major sporting event upon emergency department attendances; A retrospective cross-national European study

Helen Hughes; Felipe J. Colón-González; Anne Fouillet; Alex J. Elliot; Céline Caserio-Schönemann; Tom Hughes; Naomh Gallagher; Roger Morbey; Gillian E. Smith; Daniel Rh Thomas; Iain R. Lake

Major sporting events may influence attendance levels at hospital emergency departments (ED). Previous research has focussed on the impact of single games, or wins/losses for specific teams/countries, limiting wider generalisations. Here we explore the impact of the Euro 2016 football championships on ED attendances across four participating nations (England, France, Northern Ireland, Wales), using a single methodology. Match days were found to have no significant impact upon daily ED attendances levels. Focussing upon hourly attendances, ED attendances across all countries in the four hour pre-match period were statistically significantly lower than would be expected (OR 0.97, 95% CI 0.94–0.99) and further reduced during matches (OR 0.94, 95% CI 0.91–0.97). In the 4 hour post-match period there was no significant increase in attendances (OR 1.01, 95% CI 0.99–1.04). However, these impacts were highly variable between individual matches: for example in the 4 hour period following the final, involving France, the number of ED attendances in France increased significantly (OR 1.27, 95% CI 1.13–1.42). Overall our results indicate relatively small impacts of major sporting events upon ED attendances. The heterogeneity observed makes it difficult for health providers to predict how major sporting events may affect ED attendances but supports the future development of compatible systems in different countries to support cross-border public health surveillance.


BMC Public Health | 2018

A methodological framework for the evaluation of syndromic surveillance systems: a case study of England

Felipe J. Colón-González; Iain R. Lake; Roger Morbey; Alex J. Elliot; Richard Pebody; Gillian E. Smith

BackgroundSyndromic surveillance complements traditional public health surveillance by collecting and analysing health indicators in near real time. The rationale of syndromic surveillance is that it may detect health threats faster than traditional surveillance systems permitting more timely, and hence potentially more effective public health action. The effectiveness of syndromic surveillance largely relies on the methods used to detect aberrations. Very few studies have evaluated the performance of syndromic surveillance systems and consequently little is known about the types of events that such systems can and cannot detect.MethodsWe introduce a framework for the evaluation of syndromic surveillance systems that can be used in any setting based upon the use of simulated scenarios. For a range of scenarios this allows the time and probability of detection to be determined and uncertainty is fully incorporated. In addition, we demonstrate how such a framework can model the benefits of increases in the number of centres reporting syndromic data and also determine the minimum size of outbreaks that can or cannot be detected. Here, we demonstrate its utility using simulations of national influenza outbreaks and localised outbreaks of cryptosporidiosis.ResultsInfluenza outbreaks are consistently detected with larger outbreaks being detected in a more timely manner. Small cryptosporidiosis outbreaks (<1000 symptomatic individuals) are unlikely to be detected. We also demonstrate the advantages of having multiple syndromic data streams (e.g. emergency attendance data, telephone helpline data, general practice consultation data) as different streams are able to detect different outbreak types with different efficacy (e.g. emergency attendance data are useful for the detection of pandemic influenza but not for outbreaks of cryptosporidiosis). We also highlight that for any one disease, the utility of data streams may vary geographically, and that the detection ability of syndromic surveillance varies seasonally (e.g. an influenza outbreak starting in July is detected sooner than one starting later in the year). We argue that our framework constitutes a useful tool for public health emergency preparedness in multiple settings.ConclusionsThe proposed framework allows the exhaustive evaluation of any syndromic surveillance system and constitutes a useful tool for emergency preparedness and response.

Collaboration


Dive into the Felipe J. Colón-González's collaboration.

Top Co-Authors

Avatar

Iain R. Lake

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Hunter

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Adrian M. Tompkins

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Carlos A. Peres

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Francesca Di Giuseppe

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Pierre Bizimana

National University of Rwanda

View shared research outputs
Researchain Logo
Decentralizing Knowledge