Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix A. Plamper is active.

Publication


Featured researches published by Felix A. Plamper.


Soft Matter | 2009

Miktoarm stars of poly(ethylene oxide) and poly(dimethylaminoethyl methacrylate): manipulation of micellization by temperature and light

Felix A. Plamper; Jason R. McKee; Antti Laukkanen; Antti Nykänen; Andreas Walther; Janne Ruokolainen; Vladimir Aseyev; Heikki Tenhu

A novel method for preparation of miktoarm stars is presented, first employing Williamson ether synthesis with protected dipentaerythritol and preformed poly(ethylene oxide) (PEO) as reactants. This arm-first reaction gave, after modification, PEO macroinitiators with 4 or 6 initiation sites, which are located in the center of the main chain. The initiators were used for atom transfer radical polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA; core-first method). Heteroarm stars were obtained with two hydrophilic PEO chains and 4 or 3 stimuli responsive PDMAEMA chains respectively. Both polymers had almost the same molecular weights. The star-shaped polymers were analyzed by NMR, size exclusion chromatography SEC, osmometry and mass spectrometry. The micellization of the polymers was investigated by light scattering, fluorescence spectroscopy and cryogenic transmission electron microscopy. At the conditions used (0.1 g/L in pH 8 buffer), PDMAEMA turns hydrophobic around 55 °C, forming micelles at higher temperatures. At low temperature, trivalent counterions like hexacyanocobaltate(III) allow additional micellization of the weak polyelectrolyte PDMAEMA, with PEO as the solubilizing agent. For this unique behavior the notion “confused micellization” is introduced, which is in analogy to schizophrenic micelles. The morphology of the aggregates depends strongly on the macromolecular architecture, giving spherical micelles for the star with 4 shorter PDMAEMA arms and vesicles for the star with 3 longer arms. The diameter of the vesicles, varying between 200 nm and 4000 nm at 10 °C, can be tuned by the cooling rate. This ionically induced micellization can then be reversed by UV-illumination, leading to disaggregation upon a photoinduced valency change of the counterion.


ACS Nano | 2013

Nondestructive Light-Initiated Tuning of Layer-by-Layer Microcapsule Permeability

Weinan Xu; Ikjun Choi; Felix A. Plamper; Christopher V. Synatschke; Axel H. E. Müller; Vladimir V. Tsukruk

A nondestructive way to achieve remote, reversible, light-controlled tunable permeability of ultrathin shell microcapsules is demonstrated in this study. Microcapsules based on poly{[2-(methacryloyloxy)ethyl] trimethylammonium iodide} (PMETAI) star polyelectrolyte and poly(sodium 4-styrenesulfonate) (PSS) were prepared by a layer-by-layer (LbL) technique. We demonstrated stable microcapsules with controlled permeability with the arm number of a star polymer having significant effect on the assembly structure: the PMETAI star with 18 arms shows a more uniform and compact assembly structure. We observed that in contrast to regular microcapsules from linear polymers, the permeability of the star polymer microcapsules could be dramatically altered by photoinduced transformation of the trivalent hexacyanocobaltate ions into a mixture of mono- and divalent ions by using UV irradiation. The reversible contraction of PMETAI star polyelectrolyte arms and the compaction of star polyelectrolytes in the presence of multivalent counterions are considered to cause the dramatic photoinduced changes in microcapsule properties observed here. Remarkably, unlike the current mostly destructive approaches, the light-induced changes in microcapsule permeability are completely reversible and can be used for light-mediated loading/unloading control of microcapsules.


Biomacromolecules | 2014

Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications.

Larisa V. Sigolaeva; Snezhana Yu. Gladyr; Arjan P. H. Gelissen; Olga Mergel; Dmitry V. Pergushov; Ilya N. Kurochkin; Felix A. Plamper; Walter Richtering

This work examines the fabrication regime and the properties of microgel and microgel/enzyme thin films adsorbed onto conductive substrates (graphite or gold). The films were formed via two sequential steps: the adsorption of a temperature- and pH-sensitive microgel synthesized by precipitation copolymerization of N-isopropylacrylamide (NIPAM) and 3-(N,N-dimethylamino)propylmethacrylamide (DMAPMA) (poly(NIPAM-co-DMAPMA) at the pH-condition corresponding to its noncharged state (first step of adsorption), followed by the enzyme, tyrosinase, adsorption at the pH-condition when the microgel and the enzyme are oppositely charged (second step of adsorption). The stimuli-sensitive properties of poly(NIPAM-co-DMAPMA) microgel were characterized by potentiometric titration and dynamic light scattering (DLS) in solution as well as by atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) at solid interface. Enhanced deposition of poly(NIPAM-co-DMAPMA) microgel particles was shown at elevated temperatures exceeding the volume phase transition temperature (VPTT). The subsequent electrostatic interaction of the poly(NIPAM-co-DMAPMA) microgel matrix with tyrosinase was examined at different adsorption regimes. A considerable increase in the amount of the adsorbed enzyme was detected when the microgel film is first brought into a collapsed state but then was allowed to interact with the enzyme at T < VPTT. Spongelike approach to enzyme adsorption was applied for modification of screen-printed graphite electrodes by poly(NIPAM-co-DMAPMA)/tyrosinase films and the resultant biosensors for phenol were tested amperometrically. By temperature-induced stimulating both (i) poly(NIPAM-co-DMAPMA) microgel adsorption at T > VPTT and (ii) following spongelike tyrosinase loading at T < VPTT, we can achieve more than 3.5-fold increase in biosensor sensitivity for phenol assay. Thus, a very simple, novel, and fast strategy for physical entrapment of biomolecules by the polymeric matrix was proposed and tested. Being based on this unique stimuli-sensitive behavior of the microgel, this stimulated spongelike adsorption provides polymer films comprising concentrated biomaterial.


Langmuir | 2014

Insight in the Phase Separation Peculiarities of Poly(dialkylaminoethyl methacrylate)s

Thaanuskah Thavanesan; Christian Herbert; Felix A. Plamper

The thermoresponsive and pH-sensitive behavior of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA), and poly(N,N-diisopropylaminoethyl methacrylate) (PDiPAEMA) is compared by use of different techniques. We employed temperature- and pH-dependent turbidimetry, fluorescence spectroscopy (of the polarity indicator 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran, 4HP, which is sometimes also abbreviated as DCM), and IR spectroscopy (of the carbonyl band). Within specific pH windows, all polymers showed phase separation at elevated temperatures (showing a lower critical solution temperature behavior, an LCST behavior). By increasing the hydrophobicity of the dialkylaminoethyl substituent, the phase separation is shifted to lower pH (at constant temperatures; pH(PDMAEMA) > pH(PDEAEMA) > pH(PDiPAEMA)) or to lower temperatures (at constant pH; T(PDMAEMA) > T(PDEAEMA) > T(PDiPAEMA)). While PDMAEMA does not exhibit pronounced changes in polarity upon phase separation (as seen by fluorescence spectroscopy), PDEAEMA and PDiPAEMA provide a nonpolar surrounding for the 4HP uptake above their collapse. In addition, PDiPAEMA causes the sharpest transition (as seen by the 4HP probe), although the carbonyl hydration experiences a more gradual (sigmoidal) transition for all polymers (as seen by IR). These observations allow a distinction of the phase separation mechanisms. While the LCST properties of PDMAEMA are mainly caused by backbone/carbonyl interactions, its rather polar dimethylaminoethyl group does not inflict pronounced hydrophobicity, but promotes a higher water content within the phase-separated polymer. In contrast, the phase separation of PDEAEMA and PDiPAEMA is mainly influenced by the less polar dialkylaminoethyl groups, leading to drastic changes in the hydrophobicity around the cloud points. Further, the IR data suggest that the diisopropylaminoethyl groups of PDiPAEMA tend to backfold to the carbonyl groups/backbone to minimize water-polymer contact already in its soluble state. Finally, this study might lead to advanced lasing applications of the laser dye 4HP.


Langmuir | 2008

Water-soluble complexes of star-shaped poly(acrylic acid) with quaternized poly(4-vinylpyridine).

Dmitry V. Pergushov; I. A. Babin; Felix A. Plamper; Alexander B. Zezin; Axel H. E. Müller

The interaction of star-shaped poly(acrylic acid) having various numbers of arms (5, 8, and 21) and a strong cationic polyelectrolyte, viz., poly( N-ethyl-4-vinylpyridinium bromide), was examined at pH 7 by means of turbidimetry and dynamic light scattering. Mixing aqueous solutions of the oppositely charged polymeric components was found to result in phase separation only if their base-molar ratio Z = [N+]/[COO (-) + COOH] exceeds a certain critical value ZM ( ZM < 1); this threshold value is determined by the number of arms of the star-shaped polyelectrolyte and the ionic strength of the surrounding solution. At Z < ZM, the homogeneous aqueous mixtures of the oppositely charged polymeric components contain two types of complex species clearly differing in their sizes, with the fractions of these species appearing to depend distinctly on the number of arms of the star-shaped poly(acrylic acid), the base-molar ratio of the oppositely charged polymeric components in their mixtures, and the ionic strength of the surrounding solution. The small complex species (major fraction) are assumed to represent the particles of the water-soluble interpolyelectrolyte complex whereas the large complex species (minor fraction) are considered to be complex aggregates.


Macromolecular Rapid Communications | 2013

Spontaneous Assembly of Miktoarm Stars into Vesicular Interpolyelectrolyte Complexes

Felix A. Plamper; Arjan P. H. Gelissen; Jan Timper; Andrea Wolf; Alexander B. Zezin; Walter Richtering; Heikki Tenhu; Ulrich Simon; Joachim Mayer; Oleg V. Borisov; Dmitry V. Pergushov

Mixing a bis-hydrophilic, cationic miktoarm star polymer with a linear polyanion leads to the formation of unilamellar polymersomes, which consist of an interpolyelectrolyte complex (IPEC) wall sandwiched between poly(ethylene oxide) brushes. The experimental finding of this rare IPEC morphology is rationalized theoretically: the star architecture forces the assembly into a vesicular shape due to the high entropic penalty for stretching of the insoluble arms in non-planar morphologies. The transmission electron microscopy of vitrified samples (cryogenic TEM) is compared with the samples at ambient conditions (in situ TEM), giving one of the first TEM reports on soft matter in its pristine environment.


Angewandte Chemie | 2016

Dehydrocoupling and Silazane Cleavage Routes to Organic–Inorganic Hybrid Polymers with NBN Units in the Main Chain

Thomas Lorenz; Artur Lik; Felix A. Plamper; Holger Helten

Despite the great potential of both π-conjugated organoboron polymers and BN-doped polycyclic aromatic hydrocarbons in organic optoelectronics, our knowledge of conjugated polymers with B-N bonds in their main chain is currently scarce. Herein, the first examples of a new class of organic-inorganic hybrid polymers are presented, which consist of alternating NBN and para-phenylene units. Polycondensation with B-N bond formation provides facile access to soluble materials under mild conditions. The photophysical data for the polymer and molecular model systems of different chain lengths reveal a low extent of π-conjugation across the NBN units, which is supported by DFT calculations. The applicability of the new polymers as macromolecular polyligands is demonstrated by a cross-linking reaction with Zr(IV) .


Polymer Chemistry | 2013

A nondestructive, statistical method for determination of initiation efficiency: dipentaerythritol-aided synthesis of ternary ABC3 miktoarm stars using a combined “arm-first” and “core-first” approach

Alexander A. Steinschulte; Bjoern Schulte; Natascha Drude; Michael Erberich; Christian Herbert; Jun Okuda; Martin Möller; Felix A. Plamper

The preparation of miktoarm stars, based on poly(ethylene oxide) (PEO), poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and either poly(propylene oxide) (PPO) or poly(ethyl glycidyl ether) (PEGE), is described. Hereby, partly protected dipentaerythritol (dipentaerythritoldiacetonide) is used as a bifunctional alcohol in a polymer-based Williamson ether synthesis to become the core of the star. Mesylated PEO is reacted first with excess dipentaerythritoldiketal. This ensures full modification of the PEO with one telechelic dipentaerythritol moiety. This telechelic PEO with one hydroxyl function is then converted to a diblock copolymer with the dipentaerythritol unit at the junction point between the blocks. To achieve this, two pathways have been developed: (a) by reaction with ready-prepared, mesylated PPO and (b) by ring-opening, anionic polymerization of ethyl glycidyl ether, leading to a narrow dispersed block copolymer. The advantages and disadvantages of both routes are discussed, though both provide perfect scaffolds for further polymer grafting. This is achieved by mild deprotection of both diblocks in order to yield 4 hydroxyl functions at the core of the future star. After attachment of an initiator, atom transfer radical polymerization (ATRP) is used to grow up to 4 arms of PDMAEMA from the center of each diblock copolymer. Thus, (PEO)–(PDMAEMA)k–(PPO) or (PEO)–(PDMAEMA)k–(PEGE) heteroarm stars are prepared by a combined “arm-first” and “core-first” method. The molecular characterization is accompanied by NMR, size exclusion chromatography (SEC), osmometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI ToF MS). The latter method even allows an estimation of the initiation site efficiency during ATRP. In turn, the final molecular formula of the stars can be derived. We illustrate that a decreased initiation site efficiency generates a specific footprint in the molecular weight distribution, which could be partly reproduced by MALDI ToF MS. By comparing the simulated spectra with the real ones, one can draw conclusions on the initiation site efficiency. The obtained initiation site efficiency is found to be comparable to the one obtained by the standard destructive method: determination of molecular weight of cleaved arms, which is tedious and polymer-consuming. Therefore, it is anticipated that both the synthetic procedures as well as the analytics can be easily adapted to other polymers.


Soft Matter | 2013

Conformational changes upon high pressure induced hydration of poly(N-isopropylacrylamide) microgels

Sebastian Grobelny; Christian H. Hofmann; Mirko Erlkamp; Felix A. Plamper; Walter Richtering; Roland Winter

We investigated thermosensitive poly(N-isopropylacrylamide) microgels by high-pressure small angle X-ray scattering and Fourier-transform infrared spectroscopy below and above the collapse temperature. The measurements reveal little pressure-induced deswelling below the volume phase transition temperature and clear re-swelling of the collapsed gels at temperatures above the VPTT.


Langmuir | 2015

Engineering Systems with Spatially Separated Enzymes via Dual-Stimuli-Sensitive Properties of Microgels.

Larisa V. Sigolaeva; Olga Mergel; Evgeniy G. Evtushenko; Snezhana Yu. Gladyr; Arjan P. H. Gelissen; Dmitry V. Pergushov; Ilya N. Kurochkin; Felix A. Plamper; Walter Richtering

This work examines the adsorption regime and the properties of microgel/enzyme thin films deposited onto conductive graphite-based substrates. The films were formed via two-step sequential adsorption. A temperature- and pH-sensitive poly(N-isopropylacrylamide)-co-(3-(N,N-dimethylamino)propylmethacrylamide) microgel (poly(NIPAM-co-DMAPMA microgel) was adsorbed first, followed by its interaction with the enzymes, choline oxidase (ChO), butyrylcholinesterase (BChE), or mixtures thereof. By temperature-induced stimulating both (i) poly(NIPAM-co-DMAPMA) microgel adsorption at T > VPTT followed by short washing and drying and then (ii) enzyme loading at T < VPTT, we can effectively control the amount of the microgel adsorbed on a hydrophobic interface as well as the amount and the spatial localization of the enzyme interacted with the microgel film. Depending on the biomolecule size, enzyme molecules can (in the case for ChO) or cannot (in the case for BChE) penetrate into the microgel interior and be localized inside/outside the microgel particles. Different spatial localization, however, does not affect the specific enzymatic responses of ChO or BChE and does not prevent cascade enzymatic reaction involving both BChE and ChO as well. This was shown by the methods of electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and amperometric analysis of enzymatic responses of immobilized enzymes. Thus, a novel simple and fast strategy for physical entrapment of biomolecules by the polymeric matrix was proposed, which can be used for engineering systems with spatially separated enzymes of different types.

Collaboration


Dive into the Felix A. Plamper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Mergel

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge