Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Bemm is active.

Publication


Featured researches published by Felix Bemm.


Cell | 2016

1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana

Carlos Alonso-Blanco; Jorge Andrade; Claude Becker; Felix Bemm; Joy Bergelson; Karsten M. Borgwardt; Jun Cao; Eunyoung Chae; Todd M. Dezwaan; Wei Ding; Joseph R. Ecker; Moises Exposito-Alonso; Ashley Farlow; Joffrey Fitz; Xiangchao Gan; Dominik Grimm; Angela M. Hancock; Stefan R. Henz; Svante Holm; Matthew Horton; Mike Jarsulic; Randall A. Kerstetter; Arthur Korte; Pamela Korte; Christa Lanz; Cheng-Ruei Lee; Dazhe Meng; Todd P. Michael; Richard Mott; Ni Wayan Muliyati

Summary Arabidopsis thaliana serves as a model organism for the study of fundamental physiological, cellular, and molecular processes. It has also greatly advanced our understanding of intraspecific genome variation. We present a detailed map of variation in 1,135 high-quality re-sequenced natural inbred lines representing the native Eurasian and North African range and recently colonized North America. We identify relict populations that continue to inhabit ancestral habitats, primarily in the Iberian Peninsula. They have mixed with a lineage that has spread to northern latitudes from an unknown glacial refugium and is now found in a much broader spectrum of habitats. Insights into the history of the species and the fine-scale distribution of genetic diversity provide the basis for full exploitation of A. thaliana natural variation through integration of genomes and epigenomes with molecular and non-molecular phenotypes.


Molecular & Cellular Proteomics | 2012

The Protein Composition of the Digestive Fluid from the Venus Flytrap Sheds Light on Prey Digestion Mechanisms

Waltraud X. Schulze; Kristian W. Sanggaard; Ines Kreuzer; Anders Dahl Knudsen; Felix Bemm; Ida B. Thøgersen; Andrea Bräutigam; Line R. Thomsen; Simon Schliesky; Thomas F. Dyrlund; María Escalante-Pérez; Dirk Becker; Joerg Schultz; Henrik Karring; Andreas P. M. Weber; Peter Højrup; Rainer Hedrich; Jan J. Enghild

The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plants digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plants prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps

Sönke Scherzer; Jennifer Böhm; Elzbieta Krol; Lana Shabala; Ines Kreuzer; Christina Larisch; Felix Bemm; Khaled A. S. Al-Rasheid; Sergey Shabala; Heinz Rennenberg; Erwin Neher; Rainer Hedrich

Significance The Venus flytrap Dionaea muscipula has been in the focus of scientists since Darwin’s time. Carnivorous plants, with their specialized lifestyle, including insect capture, as well as digestion and absorption of prey, developed unique tools to gain scarce nutrients. In this study, we identified the molecular nature of the uptake machinery for prey-derived potassium and the posttranslational regulation. For the first time, to our knowledge, we functionally characterize DmHAK5 here—a KUP/HAK/KT family member as activated by a CBL-CIPK kinase complex. Detailed electrophysiological characterization identified DmHAK5 as a proton-driven, high-affinity potassium transporter with a weak selectivity. Working hand-in-hand with the low-affinity, high-capacity K+-channel DmKT1 activated by the same kinase, the transporters allow the Venus flytrap to take up prey-derived potassium. The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K+ uptake system in the Venus flytrap. In search of K+ transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K+-transporter genes into Xenopus oocytes, however, both putative K+ transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K+ transporter 1 (AKT1), we coexpressed the putative K+ transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K+ uptake. DmKT1 was found to be a K+-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around −120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K+, reducing its concentration from millimolar levels down to trace levels.


Genome Research | 2016

Venus flytrap carnivorous lifestyle builds on herbivore defense strategies

Felix Bemm; Dirk Becker; Christina Larisch; Ines Kreuzer; María Escalante-Pérez; Waltraud X. Schulze; Markus J. Ankenbrand; Anna-Lena Van de Weyer; Elzbieta Krol; Khaled A. S. Al-Rasheid; Axel Mithöfer; Andreas P. M. Weber; Jörg Schultz; Rainer Hedrich

Although the concept of botanical carnivory has been known since Darwins time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.


Nature Communications | 2018

High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell

Todd P. Michael; Florian Jupe; Felix Bemm; S. Timothy Motley; Justin P. Sandoval; Christa Lanz; Olivier Loudet; Detlef Weigel; Joseph R. Ecker

The handheld Oxford Nanopore MinION sequencer generates ultra-long reads with minimal cost and time requirements, which makes sequencing genomes at the bench feasible. Here, we sequence the gold standard Arabidopsis thaliana genome (KBS-Mac-74 accession) on the bench with the MinION sequencer, and assemble the genome using typical consumer computing hardware (4 Cores, 16 Gb RAM) into chromosome arms (62 contigs with an N50 length of 12.3 Mb). We validate the contiguity and quality of the assembly with two independent single-molecule technologies, Bionano optical genome maps and Pacific Biosciences Sequel sequencing. The new A. thaliana KBS-Mac-74 genome enables resolution of a quantitative trait locus that had previously been recalcitrant to a Sanger-based BAC sequencing approach. In summary, we demonstrate that even when the purpose is to understand complex structural variation at a single region of the genome, complete genome assembly is becoming the simplest way to achieve this goal.Long-read sequencing technologies facilitate efficient and high quality genome assembly. Here Michael et al. achieve a fast reference assembly for Arabidopsis thaliana KBS-Mac-74 accession using the handheld Oxford Nanopore MinION sequencer and consumer computing hardware, and demonstrate its usefulness in resolving complex structural variation.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Genome of a tardigrade: Horizontal gene transfer or bacterial contamination?

Felix Bemm; Clemens L. Weiß; Jörg Schultz; Frank Förster

We have read the article “Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade” (1) with interest and were astonished by the high number of genes horizontally transferred into the tardigrade genome. Still, we were surprised by the reported genome size of >200 Mbp, which is in stark contrast to a previously published size of ∼78 Mbp determined by the same group (2).


FEBS Letters | 2009

A kinome of 2600 in the ciliate Paramecium tetraurelia

Felix Bemm; Roland F. Schwarz; Frank Förster; Jörg Schultz

Protein kinases play a crucial role in the regulation of cellular processes. Most eukaryotes reserve about 2.5% of their genes for protein kinases. We analysed the genome of the single‐celled ciliate Paramecium tetraurelia and identified 2606 kinases, about 6.6% of its genes, representing the largest kinome to date. A gene tree combined with human kinases revealed a massive expansion of the calcium calmodulin regulated subfamily, underlining the importance of calcium in the physiology of P. tetraurelia. The kinases are embedded in only 40 domain architectures, contrasting 134 in human. This might indicate different mechanisms to achieve target specificity.


PLOS Neglected Tropical Diseases | 2017

Different but overlapping populations of Strongyloides stercoralis in dogs and humans—Dogs as a possible source for zoonotic strongyloidiasis

Tegegn G. Jaleta; Siyu Zhou; Felix Bemm; Fabian Schär; Virak Khieu; Sinuon Muth; Peter Odermatt; James B. Lok; Adrian Streit

Strongyloidiasis is a much-neglected soil born helminthiasis caused by the nematode Strongyloides stercoralis. Human derived S. stercoralis can be maintained in dogs in the laboratory and this parasite has been reported to also occur in dogs in the wild. Some authors have considered strongyloidiasis a zoonotic disease while others have argued that the two hosts carry host specialized populations of S. stercoralis and that dogs play a minor role, if any, as a reservoir for zoonotic S. stercoralis infections of humans. We isolated S. stercoralis from humans and their dogs in rural villages in northern Cambodia, a region with a high incidence of strongyloidiasis, and compared the worms derived from these two host species using nuclear and mitochondrial DNA sequence polymorphisms. We found that in dogs there exist two populations of S. stercoralis, which are clearly separated from each other genetically based on the nuclear 18S rDNA, the mitochondrial cox1 locus and whole genome sequence. One population, to which the majority of the worms belong, appears to be restricted to dogs. The other population is indistinguishable from the population of S. stercoralis isolated from humans. Consistent with earlier studies, we found multiple sequence variants of the hypervariable region I of the 18 S rDNA in S. stercoralis from humans. However, comparison of mitochondrial sequences and whole genome analysis suggest that these different 18S variants do not represent multiple genetically isolated subpopulations among the worms isolated from humans. We also investigated the mode of reproduction of the free-living generations of laboratory and wild isolates of S. stercoralis. Contrary to earlier literature on S. stercoralis but similar to other species of Strongyloides, we found clear evidence of sexual reproduction. Overall, our results show that dogs carry two populations, possibly different species of Strongyloides. One population appears to be dog specific but the other one is shared with humans. This argues for the strong potential of dogs as reservoirs for zoonotic transmission of S. stercoralis to humans and suggests that in order to reduce the exposure of humans to infective S. stercoralis larvae, dogs should be treated for the infection along with their owners.


New Phytologist | 2015

Integration of trap‐ and root‐derived nitrogen nutrition of carnivorous Dionaea muscipula

Peng Gao; Theresa Sofi Loeffler; Anne Honsel; Jörg Kruse; Elzbieta Krol; Sönke Scherzer; Ines Kreuzer; Felix Bemm; Franz Buegger; Tim Burzlaff; Rainer Hedrich; Heinz Rennenberg

Carnivorous Dionaea muscipula operates active snap traps for nutrient acquisition from prey; so what is the role of D. muscipulas reduced root system? We studied the capacity for nitrogen (N) acquisition via traps, and its effect on plant allometry; the capacity of roots to absorb NO₃(-), NH₄(+) and glutamine from the soil solution; and the fate and interaction of foliar- and root-acquired N. Feeding D. muscipula snap traps with insects had little effect on the root : shoot ratio, but promoted petiole relative to trap growth. Large amounts of NH₄(+) and glutamine were absorbed upon root feeding. The high capacity for root N uptake was maintained upon feeding traps with glutamine. High root acquisition of NH₄(+) was mediated by 2.5-fold higher expression of the NH₄(+) transporter DmAMT1 in the roots compared with the traps. Electrophysiological studies confirmed a high constitutive capacity for NH₄(+) uptake by roots. Glutamine feeding of traps inhibited the influx of (15)N from root-absorbed (15)N/(13)C-glutamine into these traps, but not that of (13)C. Apparently, fed traps turned into carbon sinks that even acquired organic carbon from roots. N acquisition at the whole-plant level is fundamentally different in D. muscipula compared with noncarnivorous species, where foliar N influx down-regulates N uptake by roots.


bioRxiv | 2017

Regulatory DNA in A. thaliana can tolerate high levels of sequence divergence

Cristina M Alexandre; James R Urton; Ken Jean-Baptiste; Michael W Dorrity; Joshua C Cuperus; Alessandra M Sullivan; Felix Bemm; Dino Jolic; Andrej A Arsovski; Agnieszka Thompson; Jennifer L. Nemhauser; Stanley Fields; Detlef Weigel; Kerry L. Bubb; Christine Queitsch

Variation in regulatory DNA is thought to drive evolution. Cross-species comparisons of regulatory DNA have provided evidence for both weak purifying selection and substantial turnover in regulatory regions. However, disruption of transcription factor binding sites can affect the expression of neighboring genes. Thus, the base-pair level functional annotation of regulatory DNA has proven challenging. Here, we explore regulatory DNA variation and its functional consequences in genetically diverse strains of the plant Arabidopsis thaliana, which largely maintain the positional homology of regulatory DNA. Using chromatin accessibility to delineate regulatory DNA genome-wide, we find that 15% of approximately 50,000 regulatory sites varied in accessibility among strains. Some of these accessibility differences are associated with extensive underlying sequence variation, encompassing many deletions and dramatically hypervariable sequence. For the majority of such regulatory sites, nearby gene expression was similar, despite this large genetic variation. However, among all regulatory sites, those with both high levels of sequence variation and differential chromatin accessibility are the most likely to reside near genes with differential expression among strains. Unexpectedly, the vast majority of regulatory sites that differed in chromatin accessibility among strains show little variation in the underlying DNA sequence, implicating variation in upstream regulators.

Collaboration


Dive into the Felix Bemm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Becker

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ines Kreuzer

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Joseph R. Ecker

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge