Felix Bestvater
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Felix Bestvater.
Journal of Cell Science | 2012
Julia Vulprecht; Ahuvit David; Alexandra Tibelius; Asher Castiel; Gleb Konotop; Fengying Liu; Felix Bestvater; Marc S. Raab; Hanswalter Zentgraf; Shai Izraeli; Alwin Krämer
Centrioles are key structural elements of centrosomes and primary cilia. In mammals, only a few proteins including PLK4, CPAP (CENPJ), SAS6, CEP192, CEP152 and CEP135 have thus far been identified to be required for centriole duplication. STIL (SCL/TAL1 interrupting locus, also known as SIL) is a centrosomal protein that is essential for mouse and zebrafish embryonic development and mutated in primary microcephaly. Here, we show that STIL localizes to the pericentriolar material surrounding parental centrioles. Its overexpression results in excess centriole formation. siRNA-mediated depletion of STIL leads to loss of centrioles and abrogates PLK4-induced centriole overduplication. Additionally, we show that STIL is necessary for SAS6 recruitment to centrioles, suggesting that it is essential for daughter centriole formation, interacts with the centromere protein CPAP and rapidly shuttles between the cytoplasm and centrioles. Consistent with the requirement of centrioles for cilia formation, Stil–/– mouse embryonic fibroblasts lack primary cilia – a phenotype that can be reverted by restoration of STIL expression. These findings demonstrate that STIL is an essential component of the centriole replication machinery in mammalian cells.
Journal of Cellular Physiology | 2014
Sina Grebhardt; Karin Müller-Decker; Felix Bestvater; Michal Hershfinkel; Doris Mayer
The proinflammatory S100A8/A9 proteins, which are expressed in myeloid cells under physiological conditions, are strongly expressed in human prostate cancer epithelial cells. Their role in the tumor cells and in tumor progression is largely unclear. We established a prostate cancer epithelial cell line (PC‐3 TO‐A8/A9) expressing S100A8 and S100A9 simultaneously under doxycycline control, to study the role of S100A8/A9 on tumor growth and infiltration of immune cells in subcutaneous xenografts in male NMRI nu/nu mice. Colonization of distant organs was studied after intracardial injection of the tumor cells in male NOD/SCID mice. PC‐3 TO‐A8/A9 cells grown in vitro and subcutaneous xenografts in mice not treated with doxycycline expressed high levels of S100A8/A9 mRNA and protein, whereas doxycycline treatment suppressed S100A8/A9 expression. S100A8/A9 expression did not significantly alter growth rate and invasion of the subcutaneous tumors into surrounding tissues. However, S100A8/A9 expression caused increased infiltration of immune cells, especially neutrophils. In intracardially injected mice sporadic tumor settlement was observed in muscle and lymph nodes. Colonies of tumor cells and micro‐metastases were observed in the lung of 64.3% (9 out of 14) of mice not treated with doxycycline and in 33.3% (5 out of 15) of mice treated with doxycycline. Our data demonstrate for the first time that S100A8/A9 expression in epithelial cancer cells causes enhanced infiltration of immune cells, especially neutrophils, and stimulates settlement of the cancer cells in the lung. J. Cell. Physiol. 229: 661–671, 2014.
Cytometry Part A | 2013
Kang-Bin Im; Ute Schmidt; Moonsik Kang; Ji-Young Lee; Felix Bestvater; Malte Wachsmuth
To quantify more precisely and more reliably diffusion and reaction properties of biomolecules in living cells, a novel closed description in 3D of both the bleach and the post‐bleach segment of fluorescence recovery after photobleaching (FRAP) data acquired at a point, i.e., a diffraction‐limited observation area, termed point FRAP, is presented. It covers a complete coupled reaction–diffusion scheme for mobile molecules undergoing transient or long‐term immobilization because of binding. We assess and confirm the feasibility with numerical solutions of the differential equations. By applying this model to free EYFP expressed in HeLa cells using a customized confocal laser scanning microscope that integrates point FRAP and fluorescence correlation spectroscopy (FCS), the applicability is validated by comparison with results from FCS. We show that by taking diffusion during bleaching into consideration and/or by employing a global analysis of series of bleach times, the results can be improved significantly. As the point FRAP approach allows to obtain data with diffraction‐limited positioning accuracy, diffusion and binding properties of the exon–exon junction complex (EJC) components REF2‐II and Magoh are obtained at different localizations in the nucleus of MCF7 cells and refine our view on the position‐dependent association of the EJC factors with a maturating mRNP complex. Our findings corroborate the concept of combining point FRAP and FCS for a better understanding of the underlying diffusion and binding processes.
Oncotarget | 2015
Olga Oleksiuk; Mohammed Abba; Kerem Tezcan; Wladimir Schaufler; Felix Bestvater; Nitin Patil; Udo Birk; Mathias Hafner; Peter Altevogt; Christoph Cremer; Heike Allgayer
We describe a novel approach for the detection of small non-coding RNAs in single cells by Single-Molecule Localization Microscopy (SMLM). We used a modified SMLM–setup and applied this instrument in a first proof-of-principle concept to human cancer cell lines. Our method is able to visualize single microRNA (miR)-molecules in fixed cells with a localization accuracy of 10–15 nm, and is able to quantify and analyse clustering and localization in particular subcellular sites, including exosomes. We compared the metastasis-site derived (SW620) and primary site derived (SW480) human colorectal cancer (CRC) cell lines, and (as a proof of principle) evaluated the metastasis relevant miR-31 as a first example. We observed that the subcellular distribution of miR-31 molecules in both cell lines was very heterogeneous with the largest subpopulation of optically acquired weakly metastatic cells characterized by a low number of miR-31 molecules, as opposed to a significantly higher number in the majority of the highly metastatic cells. Furthermore, the highly metastatic cells had significantly more miR-31-molecules in the extracellular space, which were visualized to co-localize with exosomes in significantly higher numbers. From this study, we conclude that miRs are not only aberrantly expressed and regulated, but also differentially compartmentalized in cells with different metastatic potential. Taken together, this novel approach, by providing single molecule images of miRNAs in cellulo can be used as a powerful supplementary tool in the analysis of miRNA function and behaviour and has far reaching potential in defining metastasis-critical subpopulations within a given heterogeneous cancer cell population.
International Journal of Molecular Sciences | 2017
Michael Hausmann; Nataša Ilić; Götz Pilarczyk; Jin-Ho Lee; Abiramy Logeswaran; Aurora Paola Borroni; Matthias Krufczik; Franziska Theda; Nadine Waltrich; Felix Bestvater; Georg Hildenbrand; Christoph Cremer; Michael Blank
Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine.
Cancers | 2018
Marion Eryilmaz; Eberhard Schmitt; Matthias Krufczik; Franziska Theda; Jin-Ho Lee; Christoph Cremer; Felix Bestvater; Wladimir Schaufler; Michael Hausmann; Georg Hildenbrand
In radiation biophysics, it is a subject of nowadays research to investigate DNA strand break repair in detail after damage induction by ionizing radiation. It is a subject of debate as to what makes up the cell’s decision to use a certain repair pathway and how the repair machinery recruited in repair foci is spatially and temporarily organized. Single-molecule localization microscopy (SMLM) allows super-resolution analysis by precise localization of single fluorescent molecule tags, resulting in nuclear structure analysis with a spatial resolution in the 10 nm regime. Here, we used SMLM to study MRE11 foci. MRE11 is one of three proteins involved in the MRN-complex (MRE11-RAD50-NBS1 complex), a prominent DNA strand resection and broken end bridging component involved in homologous recombination repair (HRR) and alternative non-homologous end joining (a-NHEJ). We analyzed the spatial arrangements of antibody-labelled MRE11 proteins in the nuclei of a breast cancer and a skin fibroblast cell line along a time-course of repair (up to 48 h) after irradiation with a dose of 2 Gy. Different kinetics for cluster formation and relaxation were determined. Changes in the internal nano-scaled structure of the clusters were quantified and compared between the two cell types. The results indicate a cell type-dependent DNA damage response concerning MRE11 recruitment and cluster formation. The MRE11 data were compared to H2AX phosphorylation detected by γH2AX molecule distribution. These data suggested modulations of MRE11 signal frequencies that were not directly correlated to DNA damage induction. The application of SMLM in radiation biophysics offers new possibilities to investigate spatial foci organization after DNA damaging and during subsequent repair.
International Journal of Molecular Sciences | 2017
Götz Pilarczyk; Ines Nesnidal; Manuel Gunkel; Margund Bach; Felix Bestvater; Michael Hausmann
In cancer, vulnerable breast epithelium malignance tendency correlates with number and activation of ErbB receptor tyrosine kinases. In the presented work, we observe ErbB receptors activated by irradiation-induced DNA injury or neuregulin-1β application, or alternatively, attenuated by a therapeutic antibody using high resolution fluorescence localization microscopy. The gap junction turnover coinciding with ErbB receptor activation and co-transport is simultaneously recorded. DNA injury caused by 4 Gray of 6 MeV photon γ-irradiation or alternatively neuregulin-1β application mobilized ErbB receptors in a nucleograde fashion—a process attenuated by trastuzumab antibody application. This was accompanied by increased receptor density, indicating packing into transport units. Factors mobilizing ErbB receptors also mobilized plasma membrane resident gap junction channels. The time course of ErbB receptor activation and gap junction mobilization recapitulates the time course of non-homologous end-joining DNA repair. We explain our findings under terms of DNA injury-induced membrane receptor tyrosine kinase activation and retrograde trafficking. In addition, we interpret the phenomenon of retrograde co-trafficking of gap junction connexons stimulated by ErbB receptor activation.
Journal of Investigative Dermatology | 2015
Michael Meister; Amel Tounsi; Evelyn Gaffal; Tobias Bald; Maria Papatriantafyllou; Julia Ludwig; Georg Pougialis; Felix Bestvater; Luisa Klotz; Gerhard Moldenhauer; Thomas Tüting; Günter J. Hämmerling; Bernd Arnold; Thilo Oelert
Keratinocytes have a pivotal role in the regulation of immune responses, but the impact of antigen presentation by these cells is still poorly understood, particularly in a situation where the antigen will be presented only in adult life. Here, we generated a transgenic mouse model in which keratinocytes exclusively present a myelin basic protein (MBP) peptide covalently linked to the major histocompatibility complex class II β-chain, solely under inflammatory conditions. In these mice, inflammation caused by epicutaneous contact sensitizer treatment resulted in keratinocyte-mediated expansion of MBP-specific CD4(+) T cells in the skin. Moreover, repeated contact sensitizer application preceding a systemic MBP immunization reduced the reactivity of the respective CD4(+) T cells and lowered the symptoms of the resulting experimental autoimmune encephalomyelitis. This downregulation was CD4(+) T-cell-mediated and dependent on the presence of the immune modulator Dickkopf-3. Thus, presentation of a neo self-antigen by keratinocytes in the inflamed, adult skin can modulate CD4(+) T-cell auto-aggression at a distal organ.
PLOS ONE | 2018
Georg Hildenbrand; Philipp Metzler; Götz Pilarczyk; Vladimir Bobu; Wilhelm Kriz; Hiltraud Hosser; Jens Fleckenstein; Matthias Krufczik; Felix Bestvater; Frederik Wenz; Michael Hausmann
Localization microscopy has shown to be capable of systematic investigations on the arrangement and counting of cellular uptake of gold nanoparticles (GNP) with nanometer resolution. In this article, we show that the application of specially modified RNA targeting gold nanoparticles (“SmartFlares”) can result in ring like shaped GNP arrangements around the cell nucleus. Transmission electron microscopy revealed GNP accumulation in vicinity to the intracellular membrane structures including them of the endoplasmatic reticulum. A quantification of the radio therapeutic dose enhancement as a proof of principle was conducted with γH2AX foci analysis: The application of both—SmartFlares and unmodified GNPs—lead to a significant dose enhancement with a factor of up to 1.2 times the dose deposition compared to non-treated breast cancer cells. This enhancement effect was even more pronounced for SmartFlares. Furthermore, it was shown that a magnetic field of 1 Tesla simultaneously applied during irradiation has no detectable influence on neither the structure nor the dose enhancement dealt by gold nanoparticles.
computational intelligence in bioinformatics and computational biology | 2016
Katharina P. Aschenbrenner; Sebastian Butzek; Christian V. Guthier; Matthias Krufczik; Michael Hausmann; Felix Bestvater; Jürgen Hesser
Localization microscopy (LM) allows to acquire pointillistic superresolution images of biological structures on the nanoscale. However, current structure reconstruction and segmentation approaches suffer from either exclusion of small structures or strong dependence on a-priori knowledge. We propose reconstruction methods based on compressed sensing (CS) denoising in combination with the isodata threshold for segmentation. The methods are verified on artificial test data. For the denoising, a Haar dictionary and a KSVD dictionary learning on artificial data are used. Both methods perform significantly better than the reference algorithm, a linear density filter, in terms of root-mean-square deviation from the ground truth. Furthermore, exemplary results on real LM data of irradiated cell nuclei with Heterochromatin labeling make small structures visible that are suppressed by the reference method. CS denoising demonstrates promising results for reconstruction of LM data.