Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Bulcke is active.

Publication


Featured researches published by Felix Bulcke.


Neurochemical Research | 2013

Handling of Iron Oxide and Silver Nanoparticles by Astrocytes

Michaela C. Hohnholt; Mark Geppert; Eva M. Luther; Charlotte Petters; Felix Bulcke; Ralf Dringen

Metal-containing nanoparticles (NPs) are currently used for various biomedical applications. Since such NPs are able to enter the brain, the cells of this organ have to deal with NPs and with NP-derived metal ions. In brain, astrocytes are considered to play a key function in regulating metal homeostasis and in protecting other brain cells against metal toxicity. Thus, among the different types of brain cells, especially astrocytes are of interest regarding the uptake and the handling of metal-containing NPs. This article summarizes the current knowledge on the consequences of an exposure of astrocytes to NPs. Special focus will be given to magnetic iron oxide nanoparticles (IONPs) and silver nanoparticles (AgNPs), since the biocompatibility of these NPs has been studied for astrocytes in detail. Cultured astrocytes efficiently accumulate IONPs and AgNPs in a time-, concentration- and temperature-dependent manner by endocytotic processes. Astrocytes are neither acutely damaged by the exposure to high concentrations of NPs nor by the prolonged intracellular presence of large amounts of accumulated NPs. Although metal ions are liberated from accumulated NPs, NP-derived iron and silver ions are not exported from astrocytes but are rather stored in proteins such as ferritin and metallothioneins which are synthesized in NP-treated astrocytes. The efficient accumulation of large amounts of metal-containing NPs and the upregulation of proteins that safely store NP-derived metal ions suggest that astrocytes protect the brain against the potential toxicity of metal-containing NPs.


Acta Biomaterialia | 2013

Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells

Eva M. Luther; Charlotte Petters; Felix Bulcke; Achim Kaltz; Karsten Thiel; Ulf Bickmeyer; Ralf Dringen

Microglia are the phagocytotic cells of the brain that respond rapidly to alterations in brain homeostasis. Since iron oxide nanoparticles (IONPs) are used for diagnostic and therapeutic applications in the brain, the consequences of an exposure of microglial cells to IONPs are of particular interest. To address this topic we have synthesized and characterized fluorescent BODIPY®-labelled IONPs (BP-IONPs). The average hydrodynamic diameter and the ζ-potential of BP-IONPs in water were ∼65 nm and -49 mV, respectively. Both values increased after dispersion of the particles in serum containing incubation medium to ∼130 nm and -8 mV. Exposure of cultured rat microglial cells with BP-IONPs caused a time-, concentration- and temperature-dependent uptake of the particles, as demonstrated by strong increases in cellular iron contents and cellular fluorescence. Incubation for 3h with 150 and 450 μM iron as BP-IONPs increased the cellular iron content from a low basal level of ∼50 nmol iron mg(-1) to 219±52 and 481±28 nmol iron (mg protein)(-1), respectively. These conditions did not affect cell viability, but exposure to higher concentrations of BP-IONPs or for longer incubation periods severely compromised cell viability. The BP-IONP fluorescence in viable microglial cells was co-localized with lysosomes. In addition, BP-IONP accumulation was lowered by 60% in the presence of the endocytosis inhibitors 5-(N-ethyl-N-isopropyl)amiloride, tyrphostin23 and chlorpromazin. These results suggest that the rapid accumulation of BP-IONPs by microglial cells is predominantly mediated by macropinocytosis and clathrin-mediated endocytosis, which direct the accumulated particles into the lysosomal compartment.


Nanotoxicology | 2013

Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes

Felix Bulcke; Karsten Thiel; Ralf Dringen

Abstract To test for consequences of an exposure of brain cells to copper oxide nanoparticles (CuO-NPs), we synthesised and characterised dimercaptosuccinate-coated CuO-NPs. These particles had a diameter of around 5 nm as determined by transmission electron microscopy, while their average hydrodynamic diameter in aqueous dispersion was 136 ± 4 nm. Dispersion in cell-culture medium containing 10% fetal calf serum increased the hydrodynamic diameter to 178 ± 12 nm and shifted the zeta potential of the particles from –49 ± 7 mV (in water) to –10 ± 3 mV. Exposure of cultured primary brain astrocytes to CuO-NPs increased the cellular copper levels and compromised the cell viability in a time-, concentration- and temperature-dependent manner. Application of CuO-NPs in concentrations above 100 µM copper (6.4 µg/ml) severely compromised the viability of the cells, as demonstrated by a lowered 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction capacity, a lowered cellular lactate dehydrogenase activity and an increased membrane permeability for the fluorescent dye propidium iodide. Copper internalisation as well as cell toxicity of astrocytes exposed to CuO-NPs were similar to that observed for cells that had been incubated with copper salts. The CuO-NP-induced toxicity was accompanied by an increase in the generation of reactive oxygen species (ROS) in the cells. Both, ROS formation and cell toxicity in CuO-NP-treated astrocytes, were lowered in the presence of the cell-permeable copper chelator tetrathiomolybdate. These data demonstrate that CuO-NPs are taken up by cultured astrocytes and suggest that excess of internalised CuO-NPs cause cell toxicity by accelerating the formation of ROS.


SpringerPlus | 2015

Copper metabolism of astrocytes

Ralf Dringen; Ivo F. Scheiber; Felix Bulcke

Copper is an essential trace element which is involved in many important cellular functions [1]. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in antioxidative defence as well as in the copper homeostasis [1, 2]. To investigate uptake, toxicity, storage and export of copper in astrocytes, we used primary rat astrocyte cultures as model system. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes, most likely by endocytotic processes. Astrocytes tolerate moderate increases in intracellular copper contents very well. However, if the specific cellular copper content exceeds after exposure to copper or copper oxide nanoparticles a threshold level of around 10 nmol copper/mg protein, accelerated production of reactive oxygen species and compromised cell viability were observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper-transporting ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes play a key role in brain copper homeostasis and that an impairment of astrocytic functions may be involved in diseases which are connected with disturbances in brain copper metabolism.


Journal of Trace Elements in Medicine and Biology | 2015

Modulation of copper accumulation and copper-induced toxicity by antioxidants and copper chelators in cultured primary brain astrocytes

Felix Bulcke; Patricia Santofimia-Castaño; Antonio González-Mateos; Ralf Dringen

Copper is essential for several important cellular processes, but an excess of copper can also lead to oxidative damage. In brain, astrocytes are considered to play a pivotal role in the copper homeostasis and antioxidative defence. To investigate whether antioxidants and copper chelators can modulate the uptake and the toxicity of copper ions in brain astrocytes, we used primary astrocytes as cell culture model. These cells accumulated substantial amounts of copper during exposure to copper chloride. Copper accumulation was accompanied by a time- and concentration-dependent loss in cell viability, as demonstrated by a lowering in cellular MTT reduction capacity and by an increase in membrane permeability for propidium iodide. During incubations in the presence of the antioxidants ascorbate, trolox or ebselen, the specific cellular copper content and the toxicity in copper chloride-treated astrocyte cultures were strongly increased. In contrast, the presence of the copper chelators bathocuproine disulfonate or tetrathiomolybdate lowered the cellular copper accumulation and the copper-induced as well as the ascorbate-accelerated copper toxicity was fully prevented. These data suggest that predominantly the cellular content of copper determines copper-induced toxicity in brain astrocytes.


Neurochemical Research | 2016

Handling of Copper and Copper Oxide Nanoparticles by Astrocytes

Felix Bulcke; Ralf Dringen

Abstract Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.


Archive | 2017

Neurotoxicity of Copper

Felix Bulcke; Ralf Dringen; Ivo F. Scheiber

Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.


SpringerPlus | 2015

Copper oxide nanoparticles: Synthesis, toxic potential and modulation of astrocytic metabolism

Felix Bulcke; Ralf Dringen; Karsten Thiel

To test for potential consequences of an exposure of brain cells to copper oxide nanoparticles (CuO-NPs), we have synthesized dimercaptosuccinate-coated CuO-NPs. These particles had a diameter of around 5 nm as determined by transmission electron microscopy but were dispersed as aggregate as demonstrated by their average hydrodynamic diameter in aqueous dispersion of 136 ± 4 nm. Exposure of cultured primary astrocytes to CuO-NPs increased the cellular copper levels and compromised the cell viability in a time- and concentration-dependent manner. CuO-NPs in concentrations above 100 µM (6.3 µg copper/mL) severely affected the viability of the cells, as demonstrated by a lowered tetrazolium dye reduction capacity, a lowered cellular lactate dehydrogenase activity, a increased membrane permeability and the generation of reactive oxygen species. In contrast, exposure of astrocytes for 24 h with 100 µM CuO-NPs did hardly affect the viability of astrocytes but stimulated the glycolytic flux, increased the cellular glutathione content, stimulated the release of glutathione and elevated the level of the metal storing proteins metallothioneins. Presence of the intracellular copper chelator tetrathiomolybdate throughout the incubation with CuO-NPs protected the cells against the toxicity of CuO-NPs and prevented the stimulation of the glycolytic flux as well as the increased levels of metallothioneins. These data demonstrate that CuO-NPs can severely damage cultured astrocyes and that copper ions derived from sub-toxic concentrations of CuO-NPs strongly affected the metabolism of astrocytes.


Neurochemical Research | 2014

Uptake of Fluorescent Iron Oxide Nanoparticles by Oligodendroglial OLN-93 Cells

Charlotte Petters; Felix Bulcke; Karsten Thiel; Ulf Bickmeyer; Ralf Dringen


Neurochemical Research | 2015

Copper Oxide Nanoparticles Stimulate Glycolytic Flux and Increase the Cellular Contents of Glutathione and Metallothioneins in Cultured Astrocytes

Felix Bulcke; Ralf Dringen

Collaboration


Dive into the Felix Bulcke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf Bickmeyer

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge