Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Christopher Mark is active.

Publication


Featured researches published by Felix Christopher Mark.


Respiratory Physiology & Neurobiology | 2004

Oxygen limited thermal tolerance in fish?: Answers obtained by nuclear magnetic resonance techniques

Hans-Otto Pörtner; Felix Christopher Mark; Christian Bock

In various phyla of marine invertebrates limited capacities of both ventilatory and circulatory performance were found to set the borders of the thermal tolerance window with limitations in aerobic scope and onset of hypoxia as a first line of sensitivity to both cold and warm temperature extremes. The hypothesis of oxygen limited thermal tolerance has recently been investigated in fish using a combination of non-invasive nuclear magnetic resonance (NMR) methodology with invasive techniques. In contrast to observations in marine invertebrates arterial oxygen tensions in fish were independent of temperature, while venous oxygen tensions displayed a thermal optimum. As the fish heart relies on venous oxygen supply, limited cardio-circulatory capacity is concluded to set the first level of thermal intolerance in fish. Nonetheless, maximized ventilatory capacity is seen to support circulation in maintaining the width of thermal tolerance windows. The interdependent setting of low and high tolerance limits is interpreted to result from trade-offs between optimized tissue functional capacity and baseline oxygen demand and energy turnover co-determined by the adjustment of mitochondrial densities and functional properties to a species-specific temperature range. At temperature extremes, systemic hypoxia will elicit metabolic depression, thereby widening the thermal window transiently sustained especially in those species preadapted to hypoxic environments.


Functional Ecology | 2014

Transgenerational plasticity in marine sticklebacks: maternal effects mediate impacts of a warming ocean

Lisa N S Shama; Anneli Strobel; Felix Christopher Mark; K. Mathias Wegner

Summary 1. Our study addresses the role of non-genetic and genetic inheritance in shaping the adaptive potential of populations under a warming ocean scenario. We used a combined experimental approach [transgenerational plasticity (TGP) and quantitative genetics] to partition the relative contribution of maternal vs. paternal (additive genetic) effects to offspring body size (a key component of fitness), and investigated a potential physiological mechanism (mitochondrial respiration capacities) underlying whole-organism growth/size responses. 2. In very early stages of growth (up to 30 days), offspring body size of marine sticklebacks benefited from maternal TGP: offspring of mothers acclimated to 17 °C were larger when reared at 17 °C, and offspring of mothers acclimated to 21 °C were larger when reared at 21 °C. The benefits of maternal TGP on body size were stronger and persisted longer (up to 60 days) for offspring reared in the warmer (21 °C) environment, suggesting that maternal effects will be highly relevant for climate change scenarios in this system. 3. Mitochondrial respiration capacities measured on mature offspring (F1 adults) matched the pattern of TGP for juvenile body size, providing an intuitive mechanistic basis for the maternal acclimation persisting into adulthood. Size differences between temperatures seen at early growth stages remained in the F1 adults, linking offspring body size to maternal inheritance of mitochondria. 4. Lower maternal variance components in the warmer environment were mostly driven by mothers acclimated to ambient (colder) conditions, further supporting our tenet that maternal effects were stronger at elevated temperature. Importantly, all parent–offspring temperature combination groups showed genotype 9 environment (G 9 E) interactions, suggesting that reaction norms have the potential to evolve. 5. To summarize, TGP and G 9 E interactions work in concert to mediate impacts of ocean warming on metabolic capacity and early growth of marine sticklebacks. TGP can buffer short-term detrimental effects of climate warming and may buy time for genetic adaptation to catch up, therefore markedly contributing to the evolutionary potential and persistence of populations under climate change.


Frontiers in Zoology | 2012

Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2

Anneli Strobel; Swaantje Bennecke; Elettra Leo; Katja Mintenbeck; Hans O. Pörtner; Felix Christopher Mark

IntroductionOngoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated P CO2 (0.2 kPa CO2) at different levels of physiological organisation.ResultsFor an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated P CO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher P CO2 was compensated for by intracellular bicarbonate accumulation.ConclusionThe partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid–base regulation. New set points of acid–base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and P CO2.


Laboratory Animals | 2015

Guidelines for the Care and Welfare of Cephalopods in Research –A consensus based on an initiative by CephRes, FELASA and the Boyd Group:

Graziano Fiorito; Andrea Affuso; Alison Cole; Paolo de Girolamo; L. D’Angelo; Ludovic Dickel; Camino Gestal; Frank W. Grasso; Michael J. Kuba; Felix Christopher Mark; Daniela Melillo; Daniel Osorio; Kerry Perkins; Giovanna Ponte; Nadav Shashar; David D. Smith; Jane Smith; Paul L.R. Andrews

This paper is the result of an international initiative and is a first attempt to develop guidelines for the care and welfare of cephalopods (i.e. nautilus, cuttlefish, squid and octopus) following the inclusion of this Class of ∼700 known living invertebrate species in Directive 2010/63/EU. It aims to provide information for investigators, animal care committees, facility managers and animal care staff which will assist in improving both the care given to cephalopods, and the manner in which experimental procedures are carried out. Topics covered include: implications of the Directive for cephalopod research; project application requirements and the authorisation process; the application of the 3Rs principles; the need for harm-benefit assessment and severity classification. Guidelines and species-specific requirements are provided on: i. supply, capture and transport; ii. environmental characteristics and design of facilities (e.g. water quality control, lighting requirements, vibration/noise sensitivity); iii. accommodation and care (including tank design), animal handling, feeding and environmental enrichment; iv. assessment of health and welfare (e.g. monitoring biomarkers, physical and behavioural signs); v. approaches to severity assessment; vi. disease (causes, prevention and treatment); vii. scientific procedures, general anaesthesia and analgesia, methods of humane killing and confirmation of death. Sections covering risk assessment for operators and education and training requirements for carers, researchers and veterinarians are also included. Detailed aspects of care and welfare requirements for the main laboratory species currently used are summarised in Appendices. Knowledge gaps are highlighted to prompt research to enhance the evidence base for future revision of these guidelines.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2006

Thermal sensitivity of uncoupling protein expression in polar and temperate fish

Felix Christopher Mark; Magnus Lucassen; Hans-Otto Pörtner

Uncoupling proteins (UCP), capable of increasing proton leakage across the inner mitochondrial membrane, may play a role in the temperature-dependent setting of energy turnover in animals (and their mitochondria). Therefore, the genes and expression of fish UCP were investigated in the Antarctic eelpout Pachycara brachycephalum and a temperate confamilial species, the common eelpout Zoarces viviparus. UCP full-length cDNA was amplified from liver and muscle using RT-PCR and rapid amplification of cDNA ends (RACE). The fish UCP mRNA consists of 1906 bp in P. brachycephalum and of 1876 bp in Z. viviparus. Both zoarcid sequences contain open reading frames of 939 bp, encoding 313 amino acids, with 98% and 99% identity, respectively. Protein sequences of zoarcid UCP are closest related to fish and mammalian UCP2. For analysis of temperature-dependent expression common eelpouts were cold-acclimated from 10 degrees C to 2 degrees C and Antarctic eelpouts were warm-acclimated from 0 degrees C to 5 degrees C. Identical cDNA probes for both species were developed to investigate fish UCP mRNA expression, and protein expression levels were detected by Western Blot in the enriched membrane fraction. During cold-acclimation in Z. viviparus, mRNA levels increased by a factor up to 2.0, protein levels increased up to 1.5, in line with mitochondrial proliferation during cold-acclimation. Despite decreased mitochondrial protein content, in Antarctic eelpout UCP levels rose upon warm acclimation by a factor up to 2.0 (mRNA) and 1.6 (protein), respectively. Besides the ongoing discussion of UCP function in vertebrates, the data are indicative of a significant role of fish UCP in thermal adaptation of fish mitochondria.


Advances in Ecological Research | 2012

Impact of climate change on fishes in complex Antarctic ecosystems

Katja Mintenbeck; Esteban Barrera-Oro; Thomas Brey; Ute Jacob; Rainer Knust; Felix Christopher Mark; Eugenia Moreira; Anneli Strobel; Wolf Arntz

Abstract Antarctic marine ecosystems are increasingly threatened by climate change and are considered to be particularly sensitive because of the adaptation of most organisms to cold and stable environmental conditions. Fishes play a central role in the Antarctic marine food web and might be affected by climate change in different ways: (i) directly by increasing water temperatures, decreasing seawater salinity and/or increasing concentrations of CO2; (ii) indirectly by alterations in the food web, in particular by changes in prey composition, and (iii) by alterations and loss of habitat due to sea ice retreat and increased ice scouring on the sea floor. Based on new data and data collected from the literature, we analyzed the vulnerability of the fish community to these threats. The potential vulnerability and acting mechanisms differ among species, developmental stages and habitats. The icefishes (family Channichthyidae) are one group that are especially vulnerable to a changing South Polar Sea, as are the pelagic shoal fish species Pleuragramma antarcticum. Both will almost certainly be negatively affected by abiotic alterations and changes in food web structure associated with climate change, the latter additionally by habitat loss. The major bottleneck for the persistence of the majority of populations appears to be the survival of early developmental stages, which are apparently highly sensitive to many types of alterations. In the long term, if climate projections are realized, species loss seems inevitable: within the demersal fish community, the loss or decline of one species might be compensated by others, whereas the pelagic fish community in contrast is extremely poor in species and dominated by P. antarcticum. The loss of this key species could therefore have especially severe consequences for food web structure and the functioning of the entire ecosystem.


Integrative and Comparative Biology | 2007

Role of blood-oxygen transport in thermal tolerance of the cuttlefish, Sepia officinalis

Frank Melzner; Felix Christopher Mark; Hans-Otto Pörtner

Mechanisms that affect thermal tolerance of ectothermic organisms have recently received much interest, mainly due to global warming and climate-change debates in both the public and in the scientific community. In physiological terms, thermal tolerance of several marine ectothermic taxa can be linked to oxygen availability, with capacity limitations in ventilatory and circulatory systems contributing to oxygen limitation at extreme temperatures. The present review briefly summarizes the processes that define thermal tolerance in a model cephalopod organism, the cuttlefish Sepia officinalis, with a focus on the contribution of the cephalopod oxygen-carrying blood pigment, hemocyanin. When acutely exposed to either extremely high or low temperatures, cuttlefish display a gradual transition to an anaerobic mode of energy production in key muscle tissues once critical temperatures (T(crit)) are reached. At high temperatures, stagnating metabolic rates and a developing hypoxemia can be correlated with a progressive failure of the circulatory system, well before T(crit) is reached. However, at low temperatures, declining metabolic rates cannot be related to ventilatory or circulatory failure. Rather, we propose a role for hemocyanin functional characteristics as a major limiting factor preventing proper tissue oxygenation. Using information on the oxygen binding characteristics of cephalopod hemocyanins, we argue that high oxygen affinities (= low P(50) values), as found at low temperatures, allow efficient oxygen shuttling only at very low venous oxygen partial pressures. Low venous PO(2)s limit rates of oxygen diffusion into cells, thus eventually causing the observed transition to anaerobic metabolism. On the basis of existing blood physiological, molecular, and crystallographical data, the potential to resolve the role of hemocyanin isoforms in thermal adaptation by an integrated molecular physiological approach is discussed.


Polar Biology | 2005

Thermal sensitivity of cellular energy budgets in some Antarctic fish hepatocytes

Felix Christopher Mark; Timo Hirse; Hans-Otto Pörtner

Oxygen demand elicited by the main cellular energy consumers was examined in isolated hepatocytes of sub-Antarctic (Lepidonotothen larseni) and high-Antarctic notothenioids (Trematomus eulepidotus, Trematomus pennellii, Trematomus lepidorhinus, Trematomus bernacchii, Artedidraco orianae) and in a zoarcid (Pachycara brachycephalum) fish with respect to the role of cellular metabolism in co-defining thermal tolerance. The relative proportions of energy allocated to protein and RNA/DNA synthesis, ion regulation and ATP synthesis were quantified between 0°C and 15°C by analysis of inhibitor sensitive cellular respiration. In all the investigated species, protein synthesis constituted 25–37%, RNA synthesis 24–35%, Na+/K+-ATPase 40–45% and mitochondrial ATP synthesis 57–65% of total respiration. The sub-Antarctic nototheniid L. larseni displayed lower cellular protein synthesis rates but somewhat higher active ion regulation activities than its high-Antarctic confamilials, as is typical for more eurythermal species. Assumed thermal optima were mirrored in minimized overall cellular energy demand. In the sub-Antarctic L. larseni and P. brachycephalum, minima of oxygen consumption were located between 3°C and 6°C, indicating elevated energy turnover below and above these temperatures. In contrast, the high-Antarctic species displayed progressively rising respiration rates during warming with a cellular energetic minimum at 0°C. The sub-Antarctic nototheniid and the zoarcid showed signs of cold-eurythermy and appear to live close to their lower limit of thermal tolerance, while high-Antarctic notothenioids show high degrees of energetic efficiency at 0°C. All cellular preparations maintained energy budgets over a wide thermal range, supporting the recent concept that thermal limits are set by oxygen and associated energy limitations at the whole organism level.


PLOS ONE | 2013

Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons.

Anneli Strobel; Martin Graeve; Hans O. Poertner; Felix Christopher Mark

Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen squamifrons, which share a similar ecology, but different habitat temperatures. After acclimation of L. squamifrons to 9°C and N. rossii to 7°C (normocapnic/hypercapnic, 0.2 kPa CO2/2000 ppm CO2) for 4–6 weeks, we compared the capacities of their mitochondrial respiratory complexes I (CI) and II (CII), their P/O ratios (phosphorylation efficiency), proton leak capacities and mitochondrial membrane fatty acid compositions. Our results reveal reduced CII respiration rates in warm-acclimated L. squamifrons and cold hypercapnia-acclimated N. rossii. Generally, L. squamifrons displayed a greater ability to increase CI contribution during acute warming and after warm-acclimation than N. rossii. Membrane unsaturation was not altered by warm or hypercapnia-acclimation in both species, but membrane fatty acids of warm-acclimated L. squamifrons were less saturated than in warm normocapnia−/hypercapnia-acclimated N. rossii. Proton leak capacities were not affected by warm or hypercapnia-acclimation of N. rossii. We conclude that an acclimatory response of mitochondrial capacities may include higher thermal plasticity of CI supported by enhanced utilization of anaplerotic substrates (via oxidative decarboxylation reactions) feeding into the citrate cycle. L. squamifrons possesses higher relative CI plasticities than N. rossii, which may facilitate the usage of energy efficient NADH-related substrates under conditions of elevated energy demand, possibly induced by ocean warming and acidification. The observed adjustments of electron transport system complexes with a higher flux through CI under warming and acidification suggest a metabolic acclimation potential of the sub-Antarctic L. squamifrons, but only limited acclimation capacities for N. rossii.


Comparative Biochemistry and Physiology B | 2013

Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii.

Anneli Strobel; Elettra Leo; Hans-Otto Pörtner; Felix Christopher Mark

Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7°C) and hypercapnia- (0.2kPa CO2) acclimation vs. control conditions (1°C, 0.04kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2.

Collaboration


Dive into the Felix Christopher Mark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anneli Strobel

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Magnus Lucassen

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Michael Oellermann

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Daniela Storch

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Rainer Knust

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Bock

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Melanie Schiffer

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge