Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Lasitschka is active.

Publication


Featured researches published by Felix Lasitschka.


Nature | 2012

Myocardial infarction accelerates atherosclerosis

Partha Dutta; Gabriel Courties; Ying Wei; Florian Leuschner; Rostic Gorbatov; Clinton S. Robbins; Yoshiko Iwamoto; Brian Thompson; Alicia L. Carlson; Timo Heidt; Maulik D. Majmudar; Felix Lasitschka; Martin Etzrodt; Peter G. Waterman; Michael T. Waring; Adam T. Chicoine; Anja M. van der Laan; Hans W.M. Niessen; Jan J. Piek; Barry B. Rubin; Jagdish Butany; James R. Stone; Hugo A. Katus; Sabina A. Murphy; David A. Morrow; Marc S. Sabatine; Claudio Vinegoni; Michael A. Moskowitz; Mikael J. Pittet; Peter Libby

During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaques in the arterial wall and cause their rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischaemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, Apoe−/− mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. Seeking the source of surplus monocytes in plaques, we found that myocardial infarction liberated haematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signalling. The progenitors then seeded the spleen, yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.


Nature Cell Biology | 2013

A complex secretory program orchestrated by the inflammasome controls paracrine senescence

Juan Carlos Acosta; Ana Banito; Torsten Wuestefeld; Athena Georgilis; Peggy Janich; Jennifer P. Morton; Dimitris Athineos; Tae-Won Kang; Felix Lasitschka; Mindaugas Andrulis; Gloria Pascual; Kelly J. Morris; Sadaf Khan; Hong Jin; Gopuraja Dharmalingam; Ambrosius P. Snijders; Thomas J. Carroll; David Capper; Catrin Pritchard; Gareth J. Inman; Thomas Longerich; Owen J. Sansom; Lars Zender; Jesús Gil

Oncogene-induced senescence (OIS) is crucial for tumour suppression. Senescent cells implement a complex pro-inflammatory response termed the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence, activates immune surveillance and paradoxically also has pro-tumorigenic properties. Here, we present evidence that the SASP can also induce paracrine senescence in normal cells both in culture and in human and mouse models of OIS in vivo. Coupling quantitative proteomics with small-molecule screens, we identified multiple SASP components mediating paracrine senescence, including TGF-β family ligands, VEGF, CCL2 and CCL20. Amongst them, TGF-β ligands play a major role by regulating p15INK4b and p21CIP1. Expression of the SASP is controlled by inflammasome-mediated IL-1 signalling. The inflammasome and IL-1 signalling are activated in senescent cells and IL-1α expression can reproduce SASP activation, resulting in senescence. Our results demonstrate that the SASP can cause paracrine senescence and impact on tumour suppression and senescence in vivo.


Nature Medicine | 2012

SAMHD1 restricts HIV-1 infection in resting CD4 + T cells

Hanna-Mari Baldauf; Xiaoyu Pan; Elina Erikson; Sarah Schmidt; Waaqo Daddacha; Manja Burggraf; Kristina Schenkova; Ina Ambiel; Guido H. Wabnitz; Thomas Gramberg; Sylvia Panitz; Egbert Flory; Nathaniel R. Landau; Serkan Sertel; Frank Rutsch; Felix Lasitschka; Baek Kim; Renate König; Oliver T. Fackler; Oliver T. Keppler

Unlike activated CD4+ T cells, resting CD4+ T cells are highly resistant to productive HIV-1 infection. Early after HIV-1 entry, a major block limits reverse transcription of incoming viral genomes. Here we show that the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 prevents reverse transcription of HIV-1 RNA in resting CD4+ T cells. SAMHD1 is abundantly expressed in resting CD4+ T cells circulating in peripheral blood and residing in lymphoid organs. The early restriction to infection in unstimulated CD4+ T cells is overcome by HIV-1 or HIV-2 virions into which viral Vpx is artificially or naturally packaged, respectively, or by addition of exogenous deoxynucleosides. Vpx-mediated proteasomal degradation of SAMHD1 and elevation of intracellular deoxynucleotide pools precede successful infection by Vpx-carrying HIV. Resting CD4+ T cells from healthy donors following SAMHD1 silencing or from a patient with Aicardi-Goutières syndrome homozygous for a nonsense mutation in SAMHD1 were permissive for HIV-1 infection. Thus, SAMHD1 imposes an effective restriction to HIV-1 infection in the large pool of noncycling CD4+ T cells in vivo. Bypassing SAMHD1 was insufficient for the release of viral progeny, implicating other barriers at later stages of HIV replication. Together, these findings may unveil new ways to interfere with the immune evasion and T cell immunopathology of pandemic HIV-1.


Journal of Immunology | 2009

Inhibition of IL-17A Attenuates Atherosclerotic Lesion Development in ApoE-Deficient Mice

Christian Erbel; Lili Chen; Florian Bea; Susanne Wangler; Sultan Celik; Felix Lasitschka; Ying Wang; Dittmar Böckler; Hugo A. Katus; Thomas J. Dengler

The importance of an (auto)immune response in atherogenesis is becoming increasingly well understood. IL-17A-expressing T cells modulate immune cell trafficking, initiating inflammation and cytokine production in (auto)immune diseases. In human carotid artery plaques, we previously showed the presence of IL-17A-producing T cells and IL-23; however, IL-17A effects on atherogenesis have not been studied. Aortic root sections from 8-wk-old apolipoprotein E-deficient mice fed a standard chow diet were examined after 12 wk for lesion area, plaque composition, cellular infiltration, cytokine expression, and apoptosis. The treatment group (n = 15) received anti-IL-17A Ab and the controls (n = 10) received irrelevant Abs. Inhibition of IL-17A markedly reduced atherosclerotic lesion area (p < 0.001), maximal stenosis (p < 0.001), and vulnerability of the lesion. IL-17A mAb-treated mice showed reduced cellular infiltration, down-regulation of activation markers on endothelium and immune cells (e.g., VCAM-1), and reduced cytokine/chemokine secretion (e.g., IL6, TNFα, CCL5). To investigate possible mechanisms, different atherogenic cell types (e.g., macrophages, dendritic cells, HUVECs, vascular smooth muscle cells) were stimulated with IL-17A in addition to TNF-α, IFN-γ, or LPS to induce cellular activation or apoptosis in vitro. Stimulation with IL-17A induced proinflammatory changes in several atherogenic cell types and apoptotic cell death in murine cells. Functional blockade of IL-17A reduces atherosclerotic lesion development and decreases plaque vulnerability, cellular infiltration, and tissue activation in apolipoprotein E-deficient mice. The present data support a pathogenic role of IL-17A in the development of atherosclerosis by way of its widespread proinflammatory and proapoptotic effects on atherogenic cells.


Gastroenterology | 2010

Loss of Prolyl Hydroxylase-1 Protects Against Colitis Through Reduced Epithelial Cell Apoptosis and Increased Barrier Function

Murtaza M. Tambuwala; Eoin P. Cummins; Colin R. Lenihan; Judith Kiss; Markus Stauch; Carsten C. Scholz; Peter Fraisl; Felix Lasitschka; Martin Mollenhauer; Sean P. Saunders; Patrick H. Maxwell; Peter Carmeliet; Padraic G. Fallon; Martin Schneider; Cormac T. Taylor

BACKGROUND & AIMS Hypoxia inducible factor (HIF) prolyl hydroxylase inhibitors are protective in mouse models of inflammatory bowel disease (IBD). Here, we investigated the therapeutic target(s) and mechanism(s) involved. METHODS The effect of genetic deletion of individual HIF-prolyl hydroxylase (PHD) enzymes on the development of dextran sulphate sodium (DSS)-induced colitis was examined in mice. RESULTS PHD1(-/-), but not PHD2(+/-) or PHD3(-/-), mice were less susceptible to the development of colitis than wild-type controls as determined by weight loss, disease activity, colon histology, neutrophil infiltration, and cytokine expression. Reduced susceptibility of PHD1(-/-) mice to colitis was associated with increased density of colonic epithelial cells relative to wild-type controls, which was because of decreased levels of apoptosis that resulted in enhanced epithelial barrier function. Furthermore, with the use of cultured epithelial cells it was confirmed that hydroxylase inhibition reversed DSS-induced apoptosis and barrier dysfunction. Finally, PHD1 levels were increased with disease severity in intestinal tissue from patients with IBD and in colonic tissues from DSS-treated mice. CONCLUSIONS These results imply a role for PHD1 as a positive regulator of intestinal epithelial cell apoptosis in the inflamed colon. Genetic loss of PHD1 is protective against colitis through decreased epithelial cell apoptosis and consequent enhancement of intestinal epithelial barrier function. Thus, targeted PHD1 inhibition may represent a new therapeutic approach in IBD.


Nature | 2014

Cell competition is a tumour suppressor mechanism in the thymus

Vera C. Martins; Katrin Busch; Dilafruz Juraeva; Carmen Blum; Carolin Ludwig; Volker Rasche; Felix Lasitschka; Sergey E. Mastitsky; Benedikt Brors; Thomas Hielscher; Hans Joerg Fehling; Hans Reimer Rodewald

Cell competition is an emerging principle underlying selection for cellular fitness during development and disease. Competition may be relevant for cancer, but an experimental link between defects in competition and tumorigenesis is elusive. In the thymus, T lymphocytes develop from precursors that are constantly replaced by bone-marrow-derived progenitors. Here we show that in mice this turnover is regulated by natural cell competition between ‘young’ bone-marrow-derived and ‘old’ thymus-resident progenitors that, although genetically identical, execute differential gene expression programs. Disruption of cell competition leads to progenitor self-renewal, upregulation of Hmga1, transformation, and T-cell acute lymphoblastic leukaemia (T-ALL) resembling the human disease in pathology, genomic lesions, leukaemia-associated transcripts, and activating mutations in Notch1. Hence, cell competition is a tumour suppressor mechanism in the thymus. Failure to select fit progenitors through cell competition may explain leukaemia in X-linked severe combined immune deficiency patients who showed thymus-autonomous T-cell development after therapy with gene-corrected autologous progenitors.


Cancer Cell | 2016

Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients

Niels Halama; Inka Zoernig; Anna Berthel; Christoph Kahlert; Fee Klupp; Meggy Suarez-Carmona; Thomas Suetterlin; Karsten Brand; Juergen Krauss; Felix Lasitschka; Tina Lerchl; Claudia Luckner-Minden; Alexis Ulrich; Moritz Koch; Juergen Weitz; Martin Schneider; Markus W. Buechler; Laurence Zitvogel; Thomas Herrmann; Axel Benner; Christina Kunz; Stephan Luecke; Christoph Springfeld; Niels Grabe; Christine S. Falk; Dirk Jaeger

The immune response influences the clinical course of colorectal cancer (CRC). Analyzing the invasive margin of human CRC liver metastases, we identified a mechanism of immune cell exploitation by tumor cells. While two distinct subsets of myeloid cells induce an influx of T cells into the invasive margin via CXCL9/CXCL10, CCL5 is produced by these T cells and stimulates pro-tumoral effects via CCR5. CCR5 blockade in patient-derived functional in vitro organotypic culture models showed a macrophage repolarization with anti-tumoral effects. These anti-tumoral effects were then confirmed in a phase I trial with a CCR5 antagonist in patients with liver metastases of advanced refractory CRC. Mitigation of tumor-promoting inflammation within the tumor tissue and objective tumor responses in CRC were observed.


Proceedings of the National Academy of Sciences of the United States of America | 2011

In vivo expression profile of the antiviral restriction factor and tumor-targeting antigen CD317/BST-2/HM1.24/tetherin in humans

Elina Erikson; Tarek Adam; Sarah Schmidt; Judith Lehmann-Koch; Benjamin Over; Christine Goffinet; Christoph Harter; Isabelle Bekeredjian-Ding; Serkan Sertel; Felix Lasitschka; Oliver T. Keppler

Human CD317 is an intrinsic immunity factor that restricts the release of enveloped viruses, including the major pathogens HIV and Lassa virus, from infected cells in culture. Its importance for infection control in humans is unclear, due in part to its incompletely defined in vivo expression pattern. CD317 also has been proposed as a selective target for immunotherapy of multiple myeloma. To provide a framework for studies of the biological functions, regulation, and therapeutic potential of CD317, we performed microarray-based expression profiling in 468 tissue samples from 25 healthy organs from more than 210 patients. We found that CD317 protein was expressed to varying degrees in all organs tested and detected in a number of specialized cell types, including hepatocytes, pneumocytes, ducts of major salivary glands, pancreas and kidney, Paneth cells, epithelia, Leydig cells, plasma cells, bone marrow stromal cells, monocytes, and vascular endothelium. Although many of these cell types are in vivo targets for pathogenic viruses, restriction by CD317 or virus-encoded antagonists has been documented in only some of them. Limited cell type–dependent coexpression of CD317 with the IFN biomarker MxA in vivo and lack of responsive stimulation in organ explants suggest that interferons may only partially regulate CD317. This in vivo expression profiling sheds light on the biology and species-specificity of CD317, identifies multiple thus far unknown interaction sites of viruses with this restriction factor, and refutes the concept of its restricted constitutive expression and primary IFN inducibility. CD317s widespread expression calls into question its suitability as a target for immunotherapy.


Inflammatory Bowel Diseases | 2010

Localization of the lipopolysaccharide recognition complex in the human healthy and inflamed premature and adult gut

Tim G. A. M. Wolfs; Joep P. M. Derikx; Caroline M. Hodin; Joris Vanderlocht; A. Driessen; Adriaan P. de Bruïne; Charles L. Bevins; Felix Lasitschka; Nikolaus Gassler; Wim van Gemert; Wim A. Buurman

Background: Microbiota in the intestinal lumen provide an abundant source of potentially detrimental antigens, including lipopolysaccharide (LPS), a potent immunostimulatory product of Gram‐negative bacteria recognized by the host via TLR‐4 and MD‐2. An aberrant immune response to LPS or other bacterial antigens has been linked to inflammatory bowel disease (IBD) and necrotizing enterocolitis (NEC). Methods: We investigated which cells express MD‐2 in the normal and inflamed ileum from neonates and adults by immunohistochemistry. Moreover, MD‐2 and TLR4 mRNA expression in normal adult ileum was studied by reverse‐transcription polymerase chain reaction (RT‐PCR) on cells isolated by laser capture microdissection. Results: Premature infants did not show MD‐2 expression either in epithelial cells or in the lamina propria. Similarly, MD‐2 was absent in epithelial cells and lamina propria inflammatory cells in preterm infants with NEC. MD‐2 protein in the healthy term neonatal and adult ileum was predominantly expressed by Paneth cells and some resident inflammatory cells in the lamina propria. MD‐2 and TLR‐4 mRNA expression was restricted to crypt cells. Also in IBD, Paneth cells were still the sole MD‐2‐expressing epithelial cells, whereas inflammatory cells (mainly plasma cells) were responsible for the vast majority of the MD‐2 expression. Conclusions: The absence of MD‐2 in the immature neonatal gut suggests impaired LPS sensing, which could predispose neonates to NEC upon microbial colonization of the immature intestine. The apparent expression of MD‐2 by Paneth cells supports the critical concept that these cells respond to luminal bacterial products in order to maintain homeostasis with the intestinal microbiota in vivo. (Inflamm Bowel Dis 2010;)


Gut | 2009

Functional characterisation of decoy receptor 3 in Crohn's disease.

Benjamin Funke; Frank Autschbach; Sunghee Kim; Felix Lasitschka; Ulrike Strauch; Gerhard Rogler; Georg Gdynia; Li Li; Norbert Gretz; Stephan Macher-Goeppinger; Bernd Sido; Peter Schirmacher; Stefan Meuer; Wilfried Roth

Aims: Both epithelial barrier dysfunction and apoptosis resistance of immune cells contribute to the pathogenesis of Crohn’s disease. The soluble decoy receptor 3 (DcR3) acts in an anti-apoptotic manner by neutralising the death ligand CD95L. Here, we investigated the possible involvement of DcR3 in Crohn’s disease. Methods: The epithelial fraction of human small intestinal mucosa samples was obtained by laser microdissection. Expression of DcR3 was examined by global gene expression profiling, quantitative reverse transcription polymerase chain reaction, immunoblot analysis, and immunohistochemistry. DcR3 concentrations in the serum of patients with Crohn’s disease were measured by enzyme-linked immunosorbent assay. Apoptosis assays were performed to study the effects of DcR3 in intestinal epithelial cells and lamina propria T cells. Results: DcR3 is over-expressed in the epithelial layer of ileum specimens in patients with Crohn’s disease, both at actively inflamed and non-active sites. DcR3 serum levels are significantly elevated in patients with active and non-active Crohn’s disease as compared to healthy controls. The expression of DcR3 in intestinal epithelial cells is induced by tumour necrosis factor α. Increased DcR3 expression is associated with activation of nuclear factor kappa B (NF-κB) and results in protection of intestinal epithelial cells and lamina propria T cells from CD95L-induced apoptosis. Conclusions: DcR3 may promote inflammation in Crohn’s disease by inhibiting CD95L-induced apoptosis of epithelial and immune cells as well as by inducing NF-κB activation.

Collaboration


Dive into the Felix Lasitschka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Schirmacher

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels Halama

University Hospital Heidelberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge