Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Niggli is active.

Publication


Featured researches published by Felix Niggli.


Blood | 2010

Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study

Valentino Conter; Claus R. Bartram; Maria Grazia Valsecchi; André Schrauder; Renate Panzer-Grümayer; Anja Möricke; Maurizio Aricò; Martin Zimmermann; Georg Mann; Giulio Rossi; Martin Stanulla; Franco Locatelli; Giuseppe Basso; Felix Niggli; Elena Barisone; Guenter Henze; Wolf-Dieter Ludwig; Oskar A. Haas; Giovanni Cazzaniga; Rolf Koehler; Daniela Silvestri; Jutta Bradtke; Rosanna Parasole; Rita Beier; Jacques J.M. van Dongen; Andrea Biondi; Martin Schrappe

The Associazione Italiana di Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Münster Acute Lymphoblastic Leukemia (AIEOP-BFM ALL 2000) study has for the first time introduced standardized quantitative assessment of minimal residual disease (MRD) based on immunoglobulin and T-cell receptor gene rearrangements as polymerase chain reaction targets (PCR-MRD), at 2 time points (TPs), to stratify patients in a large prospective study. Patients with precursor B (pB) ALL (n = 3184) were considered MRD standard risk (MRD-SR) if MRD was already negative at day 33 (analyzed by 2 markers, with a sensitivity of at least 10(-4)); MRD high risk (MRD-HR) if 10(-3) or more at day 78 and MRD intermediate risk (MRD-IR): others. MRD-SR patients were 42% (1348): 5-year event-free survival (EFS, standard error) is 92.3% (0.9). Fifty-two percent (1647) were MRD-IR: EFS 77.6% (1.3). Six percent of patients (189) were MRD-HR: EFS 50.1% (4.1; P < .001). PCR-MRD discriminated prognosis even on top of white blood cell count, age, early response to prednisone, and genotype. MRD response detected by sensitive quantitative PCR at 2 predefined TPs is highly predictive for relapse in childhood pB-ALL. The study is registered at http://clinicaltrials.gov: NCT00430118 for BFM and NCT00613457 for AIEOP.


Blood | 2008

Risk-Adjusted Therapy of Acute Lymphoblastic Leukemia Can Decrease Treatment Burden and Improve Survival: Treatment Results of 2169 Unselected Pediatric and Adolescent Patients Enrolled in the Trial ALL-BFM 95.

Anja Möricke; Alfred Reiter; Martin Zimmermann; Helmut Gadner; Martin Stanulla; Michael Dördelmann; Lutz Löning; Rita Beier; Wolf-Dieter Ludwig; Richard Ratei; Jochen Harbott; Joachim Boos; Georg Mann; Felix Niggli; Andreas Feldges; Günter Henze; Karl Welte; J.D. Beck; Thomas Klingebiel; Charlotte M. Niemeyer; Felix Zintl; Udo Bode; Christian Urban; Helmut Wehinger; Dietrich Niethammer; H. Riehm; Martin Schrappe

The trial ALL-BFM 95 for treatment of childhood acute lymphoblastic leukemia was designed to reduce acute and long-term toxicity in selected patient groups with favorable prognosis and to improve outcome in poor-risk groups by treatment intensification. These aims were pursued through a stratification strategy using white blood cell count, age, immunophenotype, treatment response, and unfavorable genetic aberrations providing an excellent discrimination of risk groups. Estimated 6-year event-free survival (6y-pEFS) for all 2169 patients was 79.6% (+/- 0.9%). The large standard-risk (SR) group (35% of patients) achieved an excellent 6y-EFS of 89.5% (+/- 1.1%) despite significant reduction of anthracyclines. In the medium-risk (MR) group (53% of patients), 6y-pEFS was 79.7% (+/- 1.2%); no improvement was accomplished by the randomized use of additional intermediate-dose cytarabine after consolidation. Omission of preventive cranial irradiation in non-T-ALL MR patients was possible without significant reduction of EFS, although the incidence of central nervous system relapses increased. In the high-risk (HR) group (12% of patients), intensification of consolidation/reinduction treatment led to considerable improvement over the previous ALL-BFM trials yielding a 6y-pEFS of 49.2% (+/- 3.2%). Compared without previous trial ALL-BFM 90, consistently favorable results in non-HR patients were achieved with significant treatment reduction in the majority of these patients.


Leukemia | 2010

Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000

Anja Möricke; Martin Zimmermann; Alfred Reiter; G Henze; André Schrauder; Helmut Gadner; W.-D. Ludwig; J. Ritter; Jochen Harbott; Georg Mann; Thomas Klingebiel; F Zintl; C. Niemeyer; Bernhard Kremens; Felix Niggli; D Niethammer; Karl Welte; Martin Stanulla; E Odenwald; Hansjörg Riehm; M Schrappe

Between 1981 and 2000, 6609 children (<18 years of age) were treated in five consecutive trials of the Berlin–Frankfurt–Münster (BFM) study group for childhood acute lymphoblastic leukemia (ALL). Patients were treated in up to 82 centers in Germany, Austria and Switzerland. Probability of 10-year event-free survival (EFS) (survival) improved from 65% (77%) in study ALL-BFM 81 to 78% (85%) in ALL-BFM 95. In parallel to relapse reduction, major efforts focused on reducing acute and late toxicity through advanced risk adaptation of treatment. The major findings derived from these ALL-BFM trials were as follows: (1) preventive cranial radiotherapy could be safely reduced to 12 Gy in T-ALL and high-risk (HR) ALL patients, and eliminated in non- HR non-T-ALL patients, if it was replaced by high-dose and intrathecal (IT) MTX; (2) omission of delayed re-intensification severely impaired outcome of low-risk patients; (3) 6-month-less maintenance therapy caused an increase in systemic relapses; (4) slow response to an initial 7-day prednisone window was identified as adverse prognostic factor; (5) condensed induction therapy resulted in significant improvement of outcome; (6) the daunorubicin dose in induction could be safely reduced in low-risk patients and (7) intensification of consolidation/re-intensification treatment led to considerable improvement of outcome in HR patients.


Leukemia | 2008

Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia

Thomas Flohr; André Schrauder; G Cazzaniga; Renate Panzer-Grümayer; V H J van der Velden; S Fischer; Martin Stanulla; G Basso; Felix Niggli; Beat W. Schäfer; Rosemary Sutton; Rolf Koehler; Martin Zimmermann; Maria Grazia Valsecchi; Helmut Gadner; Giuseppe Masera; M Schrappe; J J M van Dongen; Andrea Biondi; Claus R. Bartram

Detection of minimal residual disease (MRD) is the most sensitive method to evaluate treatment response and one of the strongest predictors of outcome in childhood acute lymphoblastic leukemia (ALL). The 10-year update on the I-BFM-SG MRD study 91 demonstrates stable results (event-free survival), that is, standard risk group (MRD-SR) 93%, intermediate risk group (MRD-IR) 74%, and high risk group (MRD-HR) 16%. In multicenter trial AIEOP-BFM ALL 2000, patients were stratified by MRD detection using quantitative PCR after induction (TP1) and consolidation treatment (TP2). From 1 July 2000 to 31 October 2004, PCR target identification was performed in 3341 patients: 2365 (71%) patients had two or more sensitive targets (⩽10−4), 671 (20%) patients revealed only one sensitive target, 217 (6%) patients had targets with lower sensitivity, and 88 (3%) patients had no targets. MRD-based risk group assignment was feasible in 2594 (78%) patients: 40% were classified as MRD-SR (two sensitive targets, MRD negativity at both time points), 8% as MRD-HR (MRD ⩾10−3 at TP2), and 52% as MRD-IR. The remaining 823 patients were stratified according to clinical risk features: HR (n=108) and IR (n=715). In conclusion, MRD-PCR-based stratification using stringent criteria is feasible in almost 80% of patients in an international multicenter trial.


Leukemia | 2006

The MLL recombinome of acute leukemias

Claus Meyer; Björn Schneider; S Jakob; Sabine Strehl; Andishe Attarbaschi; Susanne Schnittger; Claudia Schoch; M W J C Jansen; J J M van Dongen; M L den Boer; R Pieters; M-G Ennas; E Angelucci; U Koehl; Johann Greil; Frank Griesinger; U zur Stadt; C Eckert; T Szczepa nacute; ski; Felix Niggli; Beat W. Schäfer; H Kempski; Hjm Brady; Jan Zuna; J Trka; Luca Lo Nigro; Andrea Biondi; Eric Delabesse; E Macintyre

Chromosomal rearrangements of the human MLL gene are a hallmark for aggressive (high-risk) pediatric, adult and therapy-associated acute leukemias. These patients need to be identified in order to subject these patients to appropriate therapy regimen. A recently developed long-distance inverse PCR method was applied to genomic DNA isolated from individual acute leukemia patients in order to identify chromosomal rearrangements of the human MLL gene. We present data of the molecular characterization of 414 samples obtained from 272 pediatric and 142 adult leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) was determined and several new TPGs were identified. The combined data of our study and published data revealed a total of 87 different MLL rearrangements of which 51 TPGs are now characterized at the molecular level. Interestingly, the four most frequently found TPGs (AF4, AF9, ENL and AF10) encode nuclear proteins that are part of a protein network involved in histone H3K79 methylation. Thus, translocations of the MLL gene, by itself coding for a histone H3K4 methyltransferase, are presumably not randomly chosen, rather functionally selected.


Journal of Clinical Investigation | 2010

Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance

Laura Bonapace; Beat C. Bornhauser; Maike Schmitz; Gunnar Cario; Urs Ziegler; Felix Niggli; Beat W. Schäfer; Martin Schrappe; Martin Stanulla; Jean-Pierre Bourquin

In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.


Journal of Clinical Oncology | 2001

Improved Treatment Results in High-Risk Pediatric Acute Myeloid Leukemia Patients After Intensification With High-Dose Cytarabine and Mitoxantrone: Results of Study Acute Myeloid Leukemia–Berlin-Frankfurt-Münster 93

Ursula Creutzig; J. Ritter; Martin Zimmermann; Dirk Reinhardt; J. Hermann; Frank Berthold; Günter Henze; Heribert Jürgens; Kabisch H; Havers W; Alfred Reiter; Kluba U; Felix Niggli; Helmut Gadner

PURPOSE To improve outcome in high-risk patients, high-dose cytarabine and mitoxantrone (HAM) was introduced into the treatment of children with acute myelogenous leukemia (AML) in study AML-BFM 93. Patients were randomized to HAM as either the second or third therapy block, for the purpose of evaluation of efficacy and toxicity. PATIENTS AND METHODS A total of 471 children with de novo AML were entered onto the trial; 161 were at standard risk and 310 were at high risk. After the randomized induction (daunorubicin v idarubicin), further therapy, with the exception of HAM, was identical in the two risk groups and also comparable to that in study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster (AML-BFM) 87. RESULTS Overall, 387 (82%) of 471 patients achieved complete remission, and 5-year survival, event-free survival (EFS), and disease-free survival rates were 60%, 51%, and 62%, respectively. Idarubicin induction resulted in a significantly better blast cell reduction in the bone marrow on day 15. Estimated survival and probability of EFS were superior in study AML-BFM 93 compared with study AML-BFM 87 (P =.01, log-rank test). This improvement, however, was restricted to the 310 high-risk patients (remission rate and probability of 5-year EFS in study AML-BFM 93 v study AML-BFM 87: 78% v 68%, P =.007; and 44% v 31%, P =.01, log-rank test). Probability of 5-year EFS among standard-risk patients in study AML-BFM 93 was similar to that in study AML-BFM 87 (65% v 63%, P = not significant). Whether HAM was placed as the second or third therapy block was of minor importance. However, patients who received the less intensive daunorubicin treatment during induction benefited from early HAM. CONCLUSION Improved treatment results in children with high-risk AML in study AML-BFM 93 must be attributed mainly to the introduction of HAM.


Cancer Research | 2004

Gene Expression Signatures Identify Rhabdomyosarcoma Subtypes and Detect a Novel t(2;2)(q35;p23) Translocation Fusing PAX3 to NCOA1

Marco Wachtel; Marcel Dettling; Eva Koscielniak; Sabine Stegmaier; J. Treuner; Katja Simon-Klingenstein; Peter Bühlmann; Felix Niggli; Beat W. Schäfer

Rhabdomyosarcoma is a pediatric tumor type, which is classified based on histological criteria into two major subgroups, namely embryonal rhabdomyosarcoma and alveolar rhabdomyosarcoma. The majority, but not all, alveolar rhabdomyosarcoma carry the specific PAX3(7)/FKHR-translocation, whereas there is no consistent genetic abnormality recognized in embryonal rhabdomyosarcoma. To gain additional insight into the genetic characteristics of these subtypes, we used oligonucleotide microarrays to measure the expression profiles of a group of 29 rhabdomyosarcoma biopsy samples (15 embryonal rhabdomyosarcoma, and 10 translocation-positive and 4 translocation-negative alveolar rhabdomyosarcoma). Hierarchical clustering revealed expression signatures clearly discriminating all three of the subgroups. Differentially expressed genes included several tyrosine kinases and G protein-coupled receptors, which might be amenable to pharmacological intervention. In addition, the alveolar rhabdomyosarcoma signature was used to classify an additional alveolar rhabdomyosarcoma case lacking any known PAX3 or PAX7 fusion as belonging to the translocation-positive group, leading to the identification of a novel translocation t(2;2)(q35;p23), which generates a fusion protein composed of PAX3 and the nuclear receptor coactivator NCOA1, having similar transactivation properties as PAX3/FKHR. These experiments demonstrate for the first time that gene expression profiling is capable of identifying novel chromosomal translocations.


British Journal of Haematology | 2005

The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence.

Birgit Burkhardt; Martin Zimmermann; Ilske Oschlies; Felix Niggli; Georg Mann; Reza Parwaresch; Hansjoerg Riehm; Martin Schrappe; Alfred Reiter

We analysed the impact of age and gender on biology and outcome of 2084 patients diagnosed with non‐Hodgkin lymphoma (NHL) between October 1986 and December 2002 and treated according to the Berlin‐Frankfurt‐Münster (BFM) multicentre protocols NHL‐BFM‐86, ‐90 and ‐95. Median age at diagnosis was 8·0 years for 97 precursor B‐lymphoblastic lymphoma (pB‐LBL) patients, 8·8 years for 335 T‐lymphoblastic lymphoma (T‐LBL) patients, 8·4 years for 1004 Burkitts lymphoma/leukaemia (BL/B‐AL) patients, 11·4 years for 173 diffuse large B‐cell lymphoma (centroblastic subtype) (DLBCL‐CB) patients, 13·2 years for 40 primary mediastinal large B‐cell lymphoma (PMLBL) patients and 10·8 years for 215 anaplastic large‐cell lymphoma (ALCL) patients (P < 0·00001). The male:female ratio was 0·9:1 for pB‐LBL and PMLBL, 1·7:1 for DLBCL‐CB, 1·8:1 for ALCL, 2·5:1 for T‐LBL and 4·5:1 for BL/B‐AL (P < 0·00001). The probability of event‐free survival at 5 years (5‐year pEFS) was 85 ± 1% for all 2084 patients [median follow‐up 5·7 (0·1–15·9) years], and was significantly superior for male T‐LBL and DLBCL‐CB patients. Comparing age‐groups 0–4, 5–9, 10–14 and 15–18 years, pEFS was inferior for the youngest patients only in the pB‐LBL‐ and ALCL‐groups. T‐LBL and DLBCL‐CB adolescent females had worse outcome than younger girls while age had no impact on pEFS for boys. We conclude that the distribution of age and gender differed between NHL‐subtypes. The impact of gender on outcome differed between NHL subgroups. The prognostic impact of age differed not only by NHL‐subtype but also according to gender in some subtypes.


Journal of Clinical Oncology | 2010

Long-Term Outcome in Children With Relapsed Acute Lymphoblastic Leukemia After Time-Point and Site-of-Relapse Stratification and Intensified Short-Course Multidrug Chemotherapy: Results of Trial ALL-REZ BFM 90

Gesche Tallen; Richard Ratei; Georg Mann; Gertjan J. L. Kaspers; Felix Niggli; Alexandr Karachunsky; Wolfram Ebell; Gabriele Escherich; Martin Schrappe; Thomas Klingebiel; Ruediger Fengler; Günter Henze; Arend von Stackelberg

PURPOSE The multicenter trial ALL-REZ BFM (ie, Acute Lymphoblastic Leukemia Relapse Berlin-Frankfurt-Münster) 90 was designed to improve prognosis for children with relapsed acute lymphoblastic leukemia (ALL) by time-to-relapse- and site-of-relapse-adapted stratification and by introduction of novel chemotherapy elements and to evaluate new prognostic parameters in a large, population-based cohort. PATIENTS AND METHODS Five hundred twenty-five patients stratified into risk groups A (early bone marrow [BM] relapses), B (late BM relapses), and C (isolated extramedullary relapses) received alternating short-course intensive polychemotherapy (in blocks R1, R2, or R3) and cranial/craniospinal irradiation followed by maintenance therapy. Block R3 (high-dose cytarabine and etoposide) was introduced to improve the outcome compared with historical controls. Patients with early BM or T-ALL relapse (poor prognosis group [PPG]) were eligible for experimental regimens. One hundred seventeen patients received stem-cell transplantation (SCT). RESULTS The probabilities (and standard deviations) of event-free survival (pEFS) and overall survival (pOS) at 10 years were 0.30 +/- .02 and 0.36 +/- .02, respectively. Significant differences existed between strategic groups (pEFS(A) = .17 +/- .03; pEFS(B) = .43 +/- .04; pEFS(C) = .54 +/- .06; pEFS(PPG) = .15 +/- .03; log-rank P < .001). Patients of high-risk groups A plus PPG did better with SCT than with chemotherapy (pEFS = .33 +/- .05 v 0.20 +/- .05; P = .005). The pEFS was similar to trials ALL-REZ BFM 85/87 (.36 +/- .03. v 0.37 +/- .03; P = .419; PPG excluded). Time point, site of relapse, immunophenotype, and SCT were significant predictors of pEFS in multivariate analyses. CONCLUSION More than one third of patients in this large, population-based trial were cured. Neither R3 nor adaptation of chemotherapy intensity was capable of improving pEFS or of overcoming prognostic factors. In high-risk patients, remission induction regimens must be improved, and allogeneic SCT should be recommended in patients achieving second complete remission.

Collaboration


Dive into the Felix Niggli's collaboration.

Top Co-Authors

Avatar

David R. Betts

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Klingebiel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Georg Mann

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beat W. Schäfer

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

David Nadal

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge