Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Félix Ortego is active.

Publication


Featured researches published by Félix Ortego.


Nature | 2011

The genome of Tetranychus urticae reveals herbivorous pest adaptations

Miodrag Grbic; Thomas Van Leeuwen; Richard M. Clark; Stephane Rombauts; Pierre Rouzé; Vojislava Grbic; Edward J. Osborne; Wannes Dermauw; Phuong Cao Thi Ngoc; Félix Ortego; Pedro Hernández-Crespo; Isabel Diaz; M. Martinez; Maria Navajas; Elio Sucena; Sara Magalhães; Lisa M. Nagy; Ryan M. Pace; Sergej Djuranovic; Guy Smagghe; Masatoshi Iga; Olivier Christiaens; Jan A. Veenstra; John Ewer; Rodrigo Mancilla Villalobos; Jeffrey L. Hutter; Stephen D. Hudson; Marisela Vélez; Soojin V. Yi; Jia Zeng

The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant–herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance

Guy Vancanneyt; Carlos Sanz; Theodora Farmaki; Manuel Paneque; Félix Ortego; Pedro Castañera; José J. Sánchez-Serrano

Hydroperoxide lyases (HPLs) catalyze the cleavage of fatty acid hydroperoxides to aldehydes and oxoacids. These volatile aldehydes play a major role in forming the aroma of many plant fruits and flowers. In addition, they have antimicrobial activity in vitro and thus are thought to be involved in the plant defense response against pest and pathogen attack. An HPL activity present in potato leaves has been characterized and shown to cleave specifically 13-hydroperoxides of both linoleic and linolenic acids to yield hexanal and 3-hexenal, respectively, and 12-oxo-dodecenoic acid. A cDNA encoding this HPL has been isolated and used to monitor gene expression in healthy and mechanically damaged potato plants. HPL gene expression is subject to developmental control, being high in young leaves and attenuated in older ones, and it is induced weakly by wounding. HPL enzymatic activity, nevertheless, remains constant in leaves of different ages and also after wounding, suggesting that posttranscriptional mechanisms may regulate its activity levels. Antisense-mediated HPL depletion in transgenic potato plants has identified this enzyme as a major route of 13-fatty acid hydroperoxide degradation in the leaves. Although these transgenic plants have highly reduced levels of both hexanal and 3-hexenal, they show no phenotypic differences compared with wild-type ones, particularly in regard to the expression of wound-induced genes. However, aphids feeding on the HPL-depleted plants display approximately a two-fold increase in fecundity above those feeding on nontransformed plants, consistent with the hypothesis that HPL-derived products have a negative impact on aphid performance. Thus, HPL-catalyzed production of C6 aldehydes may be a key step of a built-in resistance mechanism of plants against some sucking insect pests.


Entomologia Experimentalis Et Applicata | 2004

Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain.

Gema P. Farinós; Marta de la Poza; Pedro Hernández-Crespo; Félix Ortego; Pedro Castañera

Approximately 22 000 hectares (5% of the total maize growing area) of transgenic maize expressing the Cry1Ab toxin from Bacillus thuringiensis (Bt maize) have been planted annually in Spain since 1998. Changes in the susceptibility to Cry1Ab of Spanish populations of the Mediterranean corn borer (MCB), Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae), and the European corn borer (ECB), Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), were assessed by annual monitoring on Bt maize fields. No increase in resistance was detected in the MCB populations from Ebro, Albacete, and Badajoz, nor in the ECB populations from Ebro and Badajoz during the period 1999–2002. The susceptibility of the MCB population from Madrid fluctuated from year to year, but a gradual trend towards higher levels of tolerance was not observed. Laboratory selection assays for eight generations yielded selected strains of MCB and ECB that were 21‐ and 10‐fold significantly more tolerant to Cry1Ab than the corresponding unselected strains, respectively. Nevertheless, none of the field‐collected or laboratory‐selected larvae were able to survive on Bt maize. Considering these data, no consistent shifts in susceptibility were found for Spanish populations of MCB nor ECB after 5 years of Bt maize cultivation, but systematic field monitoring needs to be continued.


Archives of Insect Biochemistry and Physiology | 1996

Characterization and distribution of digestive proteases of the stalk corn borer, Sesamia nonagrioides Lef. (Lepidoptera: Noctuidae)

Félix Ortego; Concepción Novillo; Pedro Castañera

Larval midgut extracts from the noctuid Sesamia nonagrioides Lef. were assayed for protease activity. Total proteolytic activity, as measured by azocasein hydrolysis, showed a pH optimum in the range 10.0 to 11.5, suggesting a digestive system based largely on serine-like proteases. The ability of midgut extracts to hydrolyze specific synthetic substrates, the elucidation of the pH at which maximal hydrolysis occurs, and their sensitivity to protease inhibitors confirmed the presence of the serine endoproteases: trypsin, chymotrypsin, and elastase; and the exopeptidases: carboxypeptidase A, carboxypeptidase B, and leucine aminopeptidase. The distribution of these digestive proteases along the gut sections and among the different midgut regions was examined. All types of endoproteases and exopeptidases were mainly located in the midgut, with less than 5% of the activity in the foregut and hindgut. When the two halves of the midgut were compared, all proteolytic activities were higher in the anterior portion of the midgut. Trypsin, chymotrypsin, elastase, and carboxypeptidase B activities were mainly located in the endoperitrophic space of the midgut, with some activity in the ectoperitrophic space, whereas aminopeptidase and carboxypeptidase A activities were preferentially located in the midgut epithelium.


Archives of Insect Biochemistry and Physiology | 1997

Characterization and distribution of chymotrypsin-like and other digestive proteases in Colorado potato beetle larvae

Concepción Novillo; Pedro Castañera; Félix Ortego

Chymotrypsin-like, carboxypeptidase A-like and leucine aminopeptidase-like activities have been detected in the midgut of Colorado potato beetle larvae, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), in addition to the previously identified cathepsin B, D, and H. We have characterized a new chymotrypsin-like activity using the specific substrates N- succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine-p-nitroanilide and N-benzoyl-L-tyrosine p-nitroanilide. This novel proteinase, with a pH optimum of 5.5–6.5, was neither activated by thiol compounds nor inhibited by cysteine proteinase inhibitors. Among several serine proteinase inhibitors tested, PMSF was the most effective. Gelatin-containing SDS-PAGE gels and activity staining after gel electrophoresis indicated that chymotrypsin-like activity was associated with a major band of about 63 Kda and a minor band of about 100 Kda. The major exopeptidases found in the larval midgut extracts were leucine aminopeptidase and carboxypeptidase A. Most endo- and exoproteolytic activities studied were evenly distributed among the midgut sections, indicating that there is no clear regional differentiation in the digestion of proteins. Chymotrypsin and cathepsin B, D, and H were mainly located in the endoperitrophic and ectoperitrophic spaces, with only a small activity associated with the midgut epithelium. In contrast, leucine aminopeptidase was mainly located on the wall tissue, although some activity was distributed between the ecto- and endoperitrophic spaces. The potential roles of Colorado potato beetle digestive chymotrypsin in the proteolytic activation of the δ-endotoxin from Bacillus thuringiensis, and in the use of protease inhibitors to disrupt protein digestion, are discussed. Arch. Insect Biochem. Physiol. 36:181–201, 1997.


Transgenic Research | 2003

Transgenic Expression of Trypsin Inhibitor CMe from Barley in Indica and Japonica Rice, Confers Resistance to the Rice Weevil Sitophilus Oryzae

Julio Alfonso-Rubí; Félix Ortego; Pedro Castañera; Pilar Carbonero; Isabel Diaz

Indica and japonica rice (Oryza sativa L.) plants were transformed by particle bombardment with the Itr1 gene encoding the barley trypsin inhibitor BTI-CMe, under the control of its own promoter that confers endosperm specificity, and the maize ubiquitin promoter. From 38 independent transgenic lines of indica (breeding line IR58) and 15 of the japonica (cv Senia) selected, 22 and 11, respectively, expressed the barley inhibitor at detectable levels. The transgene was correctly translated as indicated by western blot analysis with a level of expression in R3 seeds up to 0.31% (IR58) and 0.43% (Senia) of the total extracted protein. The functional integrity of BTI-CMe was confirmed by trypsin activity assays in liquid media and by activity staining gels, performed with seed extracts. The significant reduction of the survival rate of the rice weevil (Sitophilus oryzae, Coleoptera: Curculionidae) reared on homozygous transgenic indica and japonica rice seeds expressing the BTI-CMe, compared to non-transformed controls, and the decrease in the trypsin-like activity of insect crude midgut extracts, confirmed the utility of this proteinase inhibitor gene for the control of important storage pests.


Transgenic Research | 2007

Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant

Fernando Álvarez-Alfageme; M. Martinez; Sara Pascual-Ruiz; Pedro Castañera; Isabel Diaz; Félix Ortego

The aim of this study was to assess the effects of potato plants expressing a barley cystatin on a potentially cystatin-susceptible natural enemy by predation on susceptible and non-susceptible preys feeding on the plant. We have focussed on the impact of the variant HvCPI-1 C68 → G, in which the only cysteine residue was changed by a glycine, on the growth and digestive physiology of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the Egyptian cotton leafworm (ECW), Spodoptera littoralis. Moreover, we have studied the prey-mediated effects of the barley cystatin at the third trophic level, using the predatory spined soldier bug (SSB), Podisus maculiventris, as a model. Feeding trials conducted with CPB larvae reared on transgenic potato plants expressing the C68 → G variant resulted in significantly lower weight gains compared to those fed on non-transformed (NT) plants. On the contrary, larger weight gains were obtained when ECW larvae, that lack digestive cysteine proteases, were reared on transgenic potato expressing the cystatin, as compared to larvae fed on NT plants. No negative effects on survival and growth were observed when SSB nymphs were exposed to HvCPI-1 C68 → G by predation on either CPB or ECW larvae reared on transgenic potato plants expressing the barley cystatin, despite the fact that the inhibitor suppressed in vitro gut proteolysis of the predatory bug. To investigate the physiological background, biochemical analysis were carried out on guts of insects dissected at the end of the feeding assays.


Journal of Economic Entomology | 2007

Resistance to Malathion in Field Populations of Ceratitis capitata

Cristina Magaña; Pedro Hernández-Crespo; Félix Ortego; Pedro Castañera

Abstract The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is considered one of the most economically damaging pests of citrus orchards in Spain. Insecticide treatments for the control of this pest are mainly based on aerial and ground treatments with malathion bait sprays. However, the frequency of insecticide treatments has been increased in some areas of the Comunidad Valenciana in the last years, because of problems with the control of C. capitata. We have found that field populations from citrus and other fruit crops from different geographical areas in Spain showed lower susceptibility to malathion (6- to 201-fold) compared with laboratory populations. More importantly, differences in susceptibility could be related to the frequency of the field treatments. A resistant strain (W), derived from a field population, and a susceptible laboratory strain (C) were maintained in the laboratory. The W strain showed cross-resistance to the organophosphate fenthion (10-fold) but not to spinosad. Enzymatic assays showed that acethylcholinesterase activity was less inhibited in vivo by malathion and in vitro by malaoxon (active form of malathion) in adult flies from the W-resistant strain. Experiments to evaluate the effects of synergists revealed that the esterase inhibitor S,S,S-tributyl phosphorotrithioate (DEF) partially suppressed malathion resistance. Thus, target site insensitivity and metabolic resistance mediated by esterases might be involved in the loss of susceptibility to malathion in C. capitata. Nonetheless, additional biochemical and molecular studies will be required to confirm this hypothesis.


Journal of Economic Entomology | 2000

Susceptibility of Spanish Populations of the Corn Borers Sesamia nonagrioides (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Lepidoptera: Crambidae) to a Bacillus thuringiensis Endotoxin

Manuel González-Núñez; Félix Ortego; Pedro Castañera

Abstract Baseline susceptibility to the Cry1Ab delta-endotoxin from Bacillus thuringiensis (Berliner) was determined for four populations of Sesamia nonagrioides (Lefebvre) and two populations of Ostrinia nubilalis (Hübner) from Spain. This study shows that S. nonagrioides is at least as susceptible as O. nubilalis to B. thuringiensis Cry1Ab protein. We found small differences in susceptibility among the Spanish populations of S. nonagrioides that can be attributed to natural variation, because there are no records of B. thuringiensis products being used on corn crops in Spain. There were no differences in susceptibility to Cry1Ab toxin between the two populations of O. nubilalis.


Transgenic Research | 2000

Adaptation of Spodoptera exigua (Lepidoptera: Noctuidae) to barley trypsin inhibitor BTI-CMe expressed in transgenic tobacco

Pilar Lara; Félix Ortego; Elena Gonzalez-Hidalgo; Pedro Castañera; Pilar Carbonero; Isabel Díaz

Nicotiana tabacum plants were transformed with the cDNA of barley trypsin inhibitor BTI-CMe under the control of the 35S CaMV promoter. Although the transgene was expressed and the protein was active in the homozygous lines selected, growth of Spodoptera exigua (Lepidoptera: Noctuidae) larvae reared on transgenic plants was not affected. The protease activity in larval midgut extracts after 2 days feeding on transformed tobacco leaves from the highest expressing plant showed a reduction of 25% in the trypsin-like activity compared to that from insects fed on non-transformed controls. The susceptibility of digestive serine-proteases to inhibition by BTI-CMe was confirmed by activity staining gels. This decrease was compensated with a significant induction of leucine aminopeptidase-like and carboxipeptidase A-like activities, whilechymotrypsin-, elastase-, and carboxipeptidase B-like proteases were not affected.

Collaboration


Dive into the Félix Ortego's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gema P. Farinós

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Isabel Diaz

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

M. Martinez

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Matías García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Beatriz Beroiz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marisa Ruiz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta de la Poza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Concepción Novillo

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge