Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix T. Kurz is active.

Publication


Featured researches published by Felix T. Kurz.


Nature | 2015

Brain tumour cells interconnect to a functional and resistant network

Matthias Osswald; Erik Jung; Felix Sahm; Gergely Solecki; Varun Venkataramani; Jonas Blaes; Sophie Weil; Heinz Horstmann; Benedikt Wiestler; Mustafa Syed; Lulu Huang; Miriam Ratliff; Kianush Karimian Jazi; Felix T. Kurz; Torsten Schmenger; Dieter Lemke; Miriam Gömmel; Martin Pauli; Yunxiang Liao; Peter Häring; Stefan Pusch; Verena Herl; Christian Steinhäuser; Damir Krunic; Mostafa Jarahian; Hrvoje Miletic; Anna Sophie Berghoff; Oliver Griesbeck; Georgios Kalamakis; Olga Garaschuk

Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Spatio-temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters

Felix T. Kurz; Miguel A. Aon; Brian O'Rourke; Antonis A. Armoundas

Mitochondrial networks in cardiac myocytes under oxidative stress show collective (cluster) behavior through synchronization of their inner membrane potentials (ΔΨm). However, it is unclear whether the oscillation frequency and coupling strength between individual mitochondria affect the size of the cluster and vice versa. We used the wavelet transform and developed advanced signal processing tools that allowed us to capture individual mitochondrial ΔΨm oscillations in cardiac myocytes and examine their dynamic spatio-temporal properties. Heterogeneous frequency behavior prompted us to sort mitochondria according to their frequencies. Signal analysis of the mitochondrial network showed an inverse relationship between cluster size and cluster frequency as well as between cluster amplitude and cluster size. High cross-correlation coefficients between neighboring mitochondria clustered longitudinally along the myocyte striations, indicated anisotropic communication between mitochondria. Isochronal mapping of the onset of myocyte-wide ΔΨm depolarization further exemplified heterogeneous ΔΨm among mitochondria. Taken together, the results suggest that frequency and amplitude modulation of clusters of synchronized mitochondria arises by means of strong changes in local coupling between neighboring mitochondria.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Wavelet analysis reveals heterogeneous time-dependent oscillations of individual mitochondria

Felix T. Kurz; Miguel A. Aon; Brian O'Rourke; Antonis A. Armoundas

Mitochondrial inner membrane potential oscillations in cardiac myocytes synchronize under oxidative or metabolic stress, leading to synchronized whole cell oscillations. Gaining information about the temporal properties of individual mitochondrial oscillators is essential to comprehend the networks intrinsic spatiotemporal organization. We have developed methods to detect individual mitochondrial tetramethylrhodamine ethyl ester fluorescence oscillations and assess their dynamical properties using wavelet analysis. We demonstrate that these advanced signal processing tools can provide quantitative spatiotemporal information about intermitochondrial coupling. We have found that the mean frequency of selected groups of continuously oscillating mitochondria was 16.49 ± 1.04 mHz, whereas the mean frequency in the normalized mean global wavelet spectrum was 22.84 ± 1.80 mHz (n = 9 myocytes). In conclusion, this novel methodology will help shed new light on the dynamical properties of the mitochondrial network on the verge of synchronization.


The Journal of Neuroscience | 2017

Tweety-homolog 1 drives brain colonization of gliomas

Erik Jung; Matthias Osswald; Jonas Blaes; Benedikt Wiestler; Felix Sahm; Torsten Schmenger; Gergely Solecki; Katrin Deumelandt; Felix T. Kurz; Ruifan Xie; Sophie Weil; Oliver Heil; Carina Thomé; Miriam Gömmel; Mustafa Syed; Peter Häring; Peter E. Huber; Sabine Heiland; Michael Platten; Andreas von Deimling; Wolfgang Wick; Frank Winkler

Early and progressive colonization of the healthy brain is one hallmark of diffuse gliomas, including glioblastomas. We recently discovered ultralong (>10 to hundreds of microns) membrane protrusions [tumor microtubes (TMs)] extended by glioma cells. TMs have been associated with the capacity of glioma cells to effectively invade the brain and proliferate. Moreover, TMs are also used by some tumor cells to interconnect to one large, resistant multicellular network. Here, we performed a correlative gene-expression microarray and in vivo imaging analysis, and identified novel molecular candidates for TM formation and function. Interestingly, these genes were previously linked to normal CNS development. One of the genes scoring highest in tests related to the outgrowth of TMs was tweety-homolog 1 (TTYH1), which was highly expressed in a fraction of TMs in mice and patients. Ttyh1 was confirmed to be a potent regulator of normal TM morphology and of TM-mediated tumor-cell invasion and proliferation. Glioma cells with one or two TMs were mainly responsible for effective brain colonization, and Ttyh1 downregulation particularly affected this cellular subtype, resulting in reduced tumor progression and prolonged survival of mice. The remaining Ttyh1-deficient tumor cells, however, had more interconnecting TMs, which were associated with increased radioresistance in those small tumors. These findings imply a cellular and molecular heterogeneity in gliomas regarding formation and function of distinct TM subtypes, with multiple parallels to neuronal development, and suggest that Ttyh1 might be a promising target to specifically reduce TM-associated brain colonization by glioma cells in patients. SIGNIFICANCE STATEMENT In this report, we identify tweety-homolog 1 (Ttyh1), a membrane protein linked to neuronal development, as a potent driver of tumor microtube (TM)-mediated brain colonization by glioma cells. Targeting of Ttyh1 effectively inhibited the formation of invasive TMs and glioma growth, but increased network formation by intercellular TMs, suggesting a functional and molecular heterogeneity of the recently discovered TMs with potential implications for future TM-targeting strategies.


PLOS Pathogens | 2016

Experimental Cerebral Malaria Spreads along the Rostral Migratory Stream

Angelika Hoffmann; Johannes Pfeil; Julieta Alfonso; Felix T. Kurz; Felix Sahm; Sabine Heiland; Hannah Monyer; Martin Bendszus; Ann-Kristin Mueller; Xavier Helluy; Mirko Pham

It is poorly understood how progressive brain swelling in experimental cerebral malaria (ECM) evolves in space and over time, and whether mechanisms of inflammation or microvascular sequestration/obstruction dominate the underlying pathophysiology. We therefore monitored in the Plasmodium berghei ANKA-C57BL/6 murine ECM model, disease manifestation and progression clinically, assessed by the Rapid-Murine-Coma-and-Behavioral-Scale (RMCBS), and by high-resolution in vivo MRI, including sensitive assessment of early blood-brain-barrier-disruption (BBBD), brain edema and microvascular pathology. For histological correlation HE and immunohistochemical staining for microglia and neuroblasts were obtained. Our results demonstrate that BBBD and edema initiated in the olfactory bulb (OB) and spread along the rostral-migratory-stream (RMS) to the subventricular zone of the lateral ventricles, the dorsal-migratory-stream (DMS), and finally to the external capsule (EC) and brainstem (BS). Before clinical symptoms (mean RMCBS = 18.5±1) became evident, a slight, non-significant increase of quantitative T2 and ADC values was observed in OB+RMS. With clinical manifestation (mean RMCBS = 14.2±0.4), T2 and ADC values significantly increased along the OB+RMS (p = 0.049/p = 0.01). Severe ECM (mean RMCBS = 5±2.9) was defined by further spread into more posterior and deeper brain structures until reaching the BS (significant T2 elevation in DMS+EC+BS (p = 0.034)). Quantitative automated histological analyses confirmed microglial activation in areas of BBBD and edema. Activated microglia were closely associated with the RMS and neuroblasts within the RMS were severely misaligned with respect to their physiological linear migration pattern. Microvascular pathology and ischemic brain injury occurred only secondarily, after vasogenic edema formation and were both associated less with clinical severity and the temporal course of ECM. Altogether, we identified a distinct spatiotemporal pattern of microglial activation in ECM involving primarily the OB+RMS axis, a distinct pathway utilized by neuroblasts and immune cells. Our data suggest significant crosstalk between these two cell populations to be operative in deeper brain infiltration and further imply that the manifestation and progression of cerebral malaria may depend on brain areas otherwise serving neurogenesis.


Magnetic Resonance in Medicine | 2014

Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers

Felix T. Kurz; Thomas Kampf; Sabine Heiland; Martin Bendszus; Heinz Peter Schlemmer; Christian H. Ziener

Magnetically labeled cells and tissue iron deposits provide qualitative means to detect and monitor cardiovascular and cerebrovascular diseases with magnetic resonance imaging. However, to quantitatively examine the extent of pathological micromorphological changes, detailed knowledge about microstructural parameters and relaxation times is required.


Wiley Interdisciplinary Reviews: Systems Biology and Medicine | 2017

Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back

Felix T. Kurz; Jackelyn Melissa Kembro; Ana Georgina Flesia; Antonis A. Armoundas; Sonia Cortassa; Miguel A. Aon; David Lloyd

Advancing from two core traits of biological systems: multilevel network organization and nonlinearity, we review a host of novel and readily available techniques to explore and analyze their complex dynamic behavior within the framework of experimental–computational synergy. In the context of concrete biological examples, analytical methods such as wavelet, power spectra, and metabolomics–fluxomics analyses, are presented, discussed, and their strengths and limitations highlighted. Further shown is how time series from stationary and nonstationary biological variables and signals, such as membrane potential, high‐throughput metabolomics, O2 and CO2 levels, bird locomotion, at the molecular, (sub)cellular, tissue, and whole organ and animal levels, can reveal important information on the properties of the underlying biological networks. Systems biology‐inspired computational methods start to pave the way for addressing the integrated functional dynamics of metabolic, organelle and organ networks. As our capacity to unravel the control and regulatory properties of these networks and their dynamics under normal or pathological conditions broadens, so is our ability to address endogenous rhythms and clocks to improve health‐span in human aging, and to manage complex metabolic disorders, neurodegeneration, and cancer. WIREs Syst Biol Med 2017, 9:e1352. doi: 10.1002/wsbm.1352


Journal of Cerebral Blood Flow and Metabolism | 2017

Assessment of tumor oxygenation and its impact on treatment response in bevacizumab-treated recurrent glioblastoma.

David Bonekamp; Kim Mouridsen; Alexander Radbruch; Felix T. Kurz; Oliver Eidel; Antje Wick; Heinz Peter Schlemmer; Wolfgang Wick; Martin Bendszus; Leif Østergaard; Philipp Kickingereder

Antiantiogenic therapy with bevacizumab in recurrent glioblastoma is currently understood to both reduce microvascular density and to prune abnormal tumor microvessels. Microvascular pruning and the resulting vascular normalization are hypothesized to reduce tumor hypoxia and increase supply of systemic therapy to the tumor; however, the underlying pathophysiological changes and their timing after treatment initiation remain controversial. Here, we use a novel dynamic susceptibility contrast MRI-based method, which allows simultaneous assessment of tumor net oxygenation changes reflected by the tumor metabolic rate of oxygen and vascular normalization represented by the capillary transit time heterogeneity. We find that capillary transit time heterogeneity, and hence the oxygen extraction fraction combine with the tumoral blood flow (cerebral blood flow) in such a way that the overall tumor oxygenation appears to be worsened despite vascular normalization. Accordingly, hazards for both progression and death are found elevated in patients with a greater reduction of tumor metabolic rate of oxygen in response to bevacizumab and patients with higher intratumoral tumor metabolic rate of oxygen at baseline. This implies that tumors with a higher degree of angiogenesis prior to bevacizumab-treatment retain a higher level of angiogenesis during therapy despite a greater antiangiogenic effect of bevacizumab, hinting at evasive mechanisms limiting bevacizumab efficacy in that a reversal of their biological behavior and relative prognosis does not occur.


Frontiers in Physiology | 2014

Cardiac mitochondria exhibit dynamic functional clustering

Felix T. Kurz; Miguel A. Aon; Brian O'Rourke; Antonis A. Armoundas

Multi-oscillatory behavior of mitochondrial inner membrane potential ΔΨm in self-organized cardiac mitochondrial networks can be triggered by metabolic or oxidative stress. Spatio-temporal analyses of cardiac mitochondrial networks have shown that mitochondria are heterogeneously organized in synchronously oscillating clusters in which the mean cluster frequency and size are inversely correlated, thus suggesting a modulation of cluster frequency through local inter-mitochondrial coupling. In this study, we propose a method to examine the mitochondrial networks topology through quantification of its dynamic local clustering coefficients. Individual mitochondrial ΔΨm oscillation signals were identified for each cardiac myocyte and cross-correlated with all network mitochondria using previously described methods (Kurz et al., 2010a). Time-varying inter-mitochondrial connectivity, defined for mitochondria in the whole network whose signals are at least 90% correlated at any given time point, allowed considering functional local clustering coefficients. It is shown that mitochondrial clustering in isolated cardiac myocytes changes dynamically and is significantly higher than for random mitochondrial networks that are constructed using the Erdös–Rényi model based on the same sets of vertices. The networks time-averaged clustering coefficient for cardiac myocytes was found to be 0.500 ± 0.051 (N = 9) vs. 0.061 ± 0.020 for random networks, respectively. Our results demonstrate that cardiac mitochondria constitute a network with dynamically connected constituents whose topological organization is prone to clustering. Cluster partitioning in networks of coupled oscillators has been observed in scale-free and chaotic systems and is therefore in good agreement with previous models of cardiac mitochondrial networks.


Scientific Reports | 2016

Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters

Michael O. Breckwoldt; Antonis A. Armoundas; Miguel A. Aon; Martin Bendszus; Brian O'Rourke; Markus Schwarzländer; Tobias P. Dick; Felix T. Kurz

Redox switches are important mediators in neoplastic, cardiovascular and neurological disorders. We recently identified spontaneous redox signals in neurons at the single mitochondrion level where transients of glutathione oxidation go along with shortening and re-elongation of the organelle. We now have developed advanced image and signal-processing methods to re-assess and extend previously obtained data. Here we analyze redox and pH signals of entire mitochondrial populations. In total, we quantified the effects of 628 redox and pH events in 1797 mitochondria from intercostal axons and neuromuscular synapses using optical sensors (mito-Grx1-roGFP2; mito-SypHer). We show that neuronal mitochondria can undergo multiple redox cycles exhibiting markedly different signal characteristics compared to single redox events. Redox and pH events occur more often in mitochondrial clusters (medium cluster size: 34.1 ± 4.8 μm2). Local clusters possess higher mitochondrial densities than the rest of the axon, suggesting morphological and functional inter-mitochondrial coupling. We find that cluster formation is redox sensitive and can be blocked by the antioxidant MitoQ. In a nerve crush paradigm, mitochondrial clusters form sequentially adjacent to the lesion site and oxidation spreads between mitochondria. Our methodology combines optical bioenergetics and advanced signal processing and allows quantitative assessment of entire mitochondrial populations.

Collaboration


Dive into the Felix T. Kurz's collaboration.

Top Co-Authors

Avatar

Martin Bendszus

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

C.H. Ziener

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Sabine Heiland

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Thomas Kampf

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Heinz-Peter Schlemmer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

L.R. Buschle

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel A. Aon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Wick

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Gergely Solecki

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge