Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Y. Feng is active.

Publication


Featured researches published by Felix Y. Feng.


Cell | 2015

Integrative clinical genomics of advanced prostate cancer

Dan R. Robinson; Eliezer M. Van Allen; Yi Mi Wu; Nikolaus Schultz; Robert J. Lonigro; Juan Miguel Mosquera; Bruce Montgomery; Mary-Ellen Taplin; Colin C. Pritchard; Gerhardt Attard; Himisha Beltran; Wassim Abida; Robert K. Bradley; Jake Vinson; Xuhong Cao; Pankaj Vats; Lakshmi P. Kunju; Maha Hussain; Felix Y. Feng; Scott A. Tomlins; Kathleen A. Cooney; David C. Smith; Christine Brennan; Javed Siddiqui; Rohit Mehra; Yu Chen; Dana E. Rathkopf; Michael J. Morris; Stephen B. Solomon; Jeremy C. Durack

Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.


Nature Genetics | 2015

The Landscape of Long Noncoding RNAs in the Human Transcriptome

Matthew K. Iyer; Yashar S. Niknafs; Rohit Malik; Udit Singhal; Anirban Sahu; Yasuyuki Hosono; Terrence R. Barrette; John R. Prensner; Joseph R. Evans; Shuang Zhao; Anton Poliakov; Xuhong Cao; Saravana M. Dhanasekaran; Yi Mi Wu; Dan R. Robinson; David G. Beer; Felix Y. Feng; Hariharan K. Iyer; Arul M. Chinnaiyan

Long noncoding RNAs (lncRNAs) are emerging as important regulators of tissue physiology and disease processes including cancer. To delineate genome-wide lncRNA expression, we curated 7,256 RNA sequencing (RNA-seq) libraries from tumors, normal tissues and cell lines comprising over 43 Tb of sequence from 25 independent studies. We applied ab initio assembly methodology to this data set, yielding a consensus human transcriptome of 91,013 expressed genes. Over 68% (58,648) of genes were classified as lncRNAs, of which 79% were previously unannotated. About 1% (597) of the lncRNAs harbored ultraconserved elements, and 7% (3,900) overlapped disease-associated SNPs. To prioritize lineage-specific, disease-associated lncRNA expression, we employed non-parametric differential expression testing and nominated 7,942 lineage- or cancer-associated lncRNA genes. The lncRNA landscape characterized here may shed light on normal biology and cancer pathogenesis and may be valuable for future biomarker development.


The New England Journal of Medicine | 2015

DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer

Joaquin Mateo; Suzanne Carreira; Shahneen Sandhu; Susana Miranda; Helen Mossop; Raquel Perez-Lopez; Daniel Nava Rodrigues; Dan R. Robinson; Aurelius Omlin; Nina Tunariu; Gunther Boysen; Nuria Porta; Penny Flohr; Alexa Gillman; Ines Figueiredo; Claire Paulding; George Seed; Suneil Jain; Christy Ralph; Andrew Protheroe; Syed A. Hussain; Robert Jones; Tony Elliott; Ursula McGovern; Diletta Bianchini; Jane Goodall; Zafeiris Zafeiriou; Chris T. Williamson; Roberta Ferraldeschi; Ruth Riisnaes

BACKGROUND Prostate cancer is a heterogeneous disease, but current treatments are not based on molecular stratification. We hypothesized that metastatic, castration-resistant prostate cancers with DNA-repair defects would respond to poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibition with olaparib. METHODS We conducted a phase 2 trial in which patients with metastatic, castration-resistant prostate cancer were treated with olaparib tablets at a dose of 400 mg twice a day. The primary end point was the response rate, defined either as an objective response according to Response Evaluation Criteria in Solid Tumors, version 1.1, or as a reduction of at least 50% in the prostate-specific antigen level or a confirmed reduction in the circulating tumor-cell count from 5 or more cells per 7.5 ml of blood to less than 5 cells per 7.5 ml. Targeted next-generation sequencing, exome and transcriptome analysis, and digital polymerase-chain-reaction testing were performed on samples from mandated tumor biopsies. RESULTS Overall, 50 patients were enrolled; all had received prior treatment with docetaxel, 49 (98%) had received abiraterone or enzalutamide, and 29 (58%) had received cabazitaxel. Sixteen of 49 patients who could be evaluated had a response (33%; 95% confidence interval, 20 to 48), with 12 patients receiving the study treatment for more than 6 months. Next-generation sequencing identified homozygous deletions, deleterious mutations, or both in DNA-repair genes--including BRCA1/2, ATM, Fanconis anemia genes, and CHEK2--in 16 of 49 patients who could be evaluated (33%). Of these 16 patients, 14 (88%) had a response to olaparib, including all 7 patients with BRCA2 loss (4 with biallelic somatic loss, and 3 with germline mutations) and 4 of 5 with ATM aberrations. The specificity of the biomarker suite was 94%. Anemia (in 10 of the 50 patients [20%]) and fatigue (in 6 [12%]) were the most common grade 3 or 4 adverse events, findings that are consistent with previous studies of olaparib. CONCLUSIONS Treatment with the PARP inhibitor olaparib in patients whose prostate cancers were no longer responding to standard treatments and who had defects in DNA-repair genes led to a high response rate. (Funded by Cancer Research UK and others; ClinicalTrials.gov number, NCT01682772; Cancer Research UK number, CRUK/11/029.).


Nature | 2014

Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer

Irfan A. Asangani; Vijaya L. Dommeti; Xiaoju Wang; Rohit Malik; Marcin Cieslik; Rendong Yang; June Escara-Wilke; Kari Wilder-Romans; Sudheer Dhanireddy; Carl G. Engelke; Mathew K. Iyer; Xiaojun Jing; Yi Mi Wu; Xuhong Cao; Zhaohui S. Qin; Shaomeng Wang; Felix Y. Feng; Arul M. Chinnaiyan

Men who develop metastatic castration-resistant prostate cancer (CRPC) invariably succumb to the disease. Progression to CRPC after androgen ablation therapy is predominantly driven by deregulated androgen receptor (AR) signalling. Despite the success of recently approved therapies targeting AR signalling, such as abiraterone and second-generation anti-androgens including MDV3100 (also known as enzalutamide), durable responses are limited, presumably owing to acquired resistance. Recently, JQ1 and I-BET762 two selective small-molecule inhibitors that target the amino-terminal bromodomains of BRD4, have been shown to exhibit anti-proliferative effects in a range of malignancies. Here we show that AR-signalling-competent human CRPC cell lines are preferentially sensitive to bromodomain and extraterminal (BET) inhibition. BRD4 physically interacts with the N-terminal domain of AR and can be disrupted by JQ1 (refs 11, 13). Like the direct AR antagonist MDV3100, JQ1 disrupted AR recruitment to target gene loci. By contrast with MDV3100, JQ1 functions downstream of AR, and more potently abrogated BRD4 localization to AR target loci and AR-mediated gene transcription, including induction of the TMPRSS2-ERG gene fusion and its oncogenic activity. In vivo, BET bromodomain inhibition was more efficacious than direct AR antagonism in CRPC xenograft mouse models. Taken together, these studies provide a novel epigenetic approach for the concerted blockade of oncogenic drivers in advanced prostate cancer.


Cancer Discovery | 2013

Identification of targetable FGFR gene fusions in diverse cancers.

Yi Mi Wu; Fengyun Su; Shanker Kalyana-Sundaram; Nickolay A. Khazanov; Bushra Ateeq; Xuhong Cao; Robert J. Lonigro; Pankaj Vats; Rui Wang; Su Fang Lin; Ann Joy Cheng; Lakshmi P. Kunju; Javed Siddiqui; Scott A. Tomlins; Peter Wyngaard; Seth Sadis; Sameek Roychowdhury; Maha Hussain; Felix Y. Feng; Mark M. Zalupski; Moshe Talpaz; Kenneth J. Pienta; Daniel R. Rhodes; Dan R. Robinson; Arul M. Chinnaiyan

Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2, including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Because of the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts, which incorporate transcriptome analysis for gene fusions, are poised to identify rare, targetable FGFR fusions across diverse cancer types.


Nature Genetics | 2013

The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex

John R. Prensner; Matthew K. Iyer; Anirban Sahu; Irfan A. Asangani; Qi Cao; Lalit Patel; Ismael A. Vergara; Elai Davicioni; Nicholas Erho; Mercedeh Ghadessi; Robert B. Jenkins; Timothy J. Triche; Rohit Malik; Rachel Bedenis; Natalie McGregor; Teng Ma; Wei Chen; Sumin Han; Xiaojun Jing; Xuhong Cao; Xiaoju Wang; Benjamin Chandler; Wei Yan; Javed Siddiqui; Lakshmi P. Kunju; Saravana M. Dhanasekaran; Kenneth J. Pienta; Felix Y. Feng; Arul M. Chinnaiyan

Prostate cancers remain indolent in the majority of individuals but behave aggressively in a minority. The molecular basis for this clinical heterogeneity remains incompletely understood. Here we characterize a long noncoding RNA termed SChLAP1 (second chromosome locus associated with prostate-1; also called LINC00913) that is overexpressed in a subset of prostate cancers. SChLAP1 levels independently predict poor outcomes, including metastasis and prostate cancer–specific mortality. In vitro and in vivo gain-of-function and loss-of-function experiments indicate that SChLAP1 is critical for cancer cell invasiveness and metastasis. Mechanistically, SChLAP1 antagonizes the genome-wide localization and regulatory functions of the SWI/SNF chromatin-modifying complex. These results suggest that SChLAP1 contributes to the development of lethal cancer at least in part by antagonizing the tumor-suppressive functions of the SWI/SNF complex.


Cancer Cell | 2011

Mechanistic Rationale for Inhibition of Poly(ADP-Ribose) Polymerase in ETS Gene Fusion-Positive Prostate Cancer

J. Chad Brenner; Bushra Ateeq; Yong Li; Anastasia K. Yocum; Qi Cao; Irfan A. Asangani; Sonam Patel; Xiaoju Wang; Hallie Liang; Jindan Yu; Nallasivam Palanisamy; Javed Siddiqui; Wei Yan; Xuhong Cao; Rohit Mehra; Aaron Sabolch; Venkatesha Basrur; Robert J. Lonigro; Jun Yang; Scott A. Tomlins; Christopher A. Maher; Kojo S.J. Elenitoba-Johnson; Maha Hussain; Nora M. Navone; Kenneth J. Pienta; Sooryanarayana Varambally; Felix Y. Feng; Arul M. Chinnaiyan

Recurrent fusions of ETS genes are considered driving mutations in a diverse array of cancers, including Ewings sarcoma, acute myeloid leukemia, and prostate cancer. We investigate the mechanisms by which ETS fusions mediate their effects, and find that the product of the predominant ETS gene fusion, TMPRSS2:ERG, interacts in a DNA-independent manner with the enzyme poly (ADP-ribose) polymerase 1 (PARP1) and the catalytic subunit of DNA protein kinase (DNA-PKcs). ETS gene-mediated transcription and cell invasion require PARP1 and DNA-PKcs expression and activity. Importantly, pharmacological inhibition of PARP1 inhibits ETS-positive, but not ETS-negative, prostate cancer xenograft growth. Finally, overexpression of the TMPRSS2:ERG fusion induces DNA damage, which is potentiated by PARP1 inhibition in a manner similar to that of BRCA1/2 deficiency.


Nature Reviews Cancer | 2006

Integration of EGFR inhibitors with radiochemotherapy

Mukesh K. Nyati; Meredith A. Morgan; Felix Y. Feng; Theodore S. Lawrence

Laboratory studies that led to the development of epidermal growth factor receptor (EGFR) inhibitors indicated that such inhibitors would be effective when given to patients with tumours that are driven by activated EGFR. However, initial clinical studies have shown modest responses to EGFR inhibitors when used alone, and it has not yet been possible to clearly identify which tumours will respond to this therapy. As a result, EGFR inhibitors are now used in combination with radiation therapy, chemotherapy and, more recently, with concurrent radiochemotherapy. In general, these clinical trials have been designed without much preclinical data. What do we need to know to make these combinations successful in the clinic?


Journal of Clinical Oncology | 2010

Intensity-Modulated Chemoradiotherapy Aiming to Reduce Dysphagia in Patients With Oropharyngeal Cancer: Clinical and Functional Results

Felix Y. Feng; Hyungjin Myra Kim; Teresa H. Lyden; Marc J. Haxer; Francis P. Worden; Mary Feng; Jeffrey S. Moyer; Mark E. Prince; Thomas E. Carey; Gregory T. Wolf; Carol R. Bradford; Douglas B. Chepeha; Avraham Eisbruch

PURPOSE To assess clinical and functional results of chemoradiotherapy for oropharyngeal cancer (OPC), utilizing intensity-modulated radiotherapy (IMRT) to spare the important swallowing structures to reduce post-therapy dysphagia. PATIENTS AND METHODS This was a prospective study of weekly chemotherapy (carboplatin dosed at one times the area under the curve [AUC, AUC 1] and paclitaxel 30 mg/m(2)) concurrent with IMRT aiming to spare noninvolved parts of the swallowing structures: pharyngeal constrictors, glottic and supraglottic larynx, and esophagus as well as the oral cavity and major salivary glands. Swallowing was assessed by patient-reported Swallowing and Eating Domain scores, observer-rated scores, and videofluoroscopy (VF) before therapy and periodically after therapy through 2 years. RESULTS Overall, 73 patients with stages III to IV OPC participated. At a median follow-up of 36 months, 3-year disease-free and locoregional recurrence-free survivals were 88% and 96%, respectively. All measures of dysphagia worsened soon after therapy; observer-rated and patient-reported scores recovered over time, but VF scores did not. At 1 year after therapy, observer-rated dysphagia was absent or minimal (scores 0 to 1) in all patients except four: one who was feeding-tube dependent and three who required soft diet. From pretherapy to 12 months post-therapy, the Swallowing and Eating Domain scores worsened on average (+/- standard deviation) by 10 +/- 21 and 13 +/- 19, respectively (on scales of 0 to 100), and VF scores (on scale of 1 to 7) worsened from 2.9 +/- 1.5 (mild dysphagia) to 4.1 +/- 0.9 (mild/moderate dysphagia). CONCLUSION Chemoradiotherapy with IMRT aiming to reduce dysphagia can be performed safely for OPC and has high locoregional tumor control rates. On average, long-term patient-reported, observer-rated, and objective measures of swallowing were only slightly worse than pretherapy measures, representing potential improvement compared with previous studies.


Clinical Cancer Research | 2010

Tobacco Use in Human Papillomavirus–Positive Advanced Oropharynx Cancer Patients Related to Increased Risk of Distant Metastases and Tumor Recurrence

Jessica H. Maxwell; Bhavna Kumar; Felix Y. Feng; Francis P. Worden; Julia S. Lee; Avraham Eisbruch; Gregory T. Wolf; Mark E. Prince; Jeffrey S. Moyer; Theodoros N. Teknos; Douglas B. Chepeha; Jonathan B. McHugh; Susan G. Urba; Jay Stoerker; Heather M. Walline; David M. Kurnit; Kitrina G. Cordell; Samantha J. Davis; Preston D. Ward; Carol R. Bradford; Thomas E. Carey

Purpose: The goal of this study was to examine the effect of tobacco use on disease recurrence (local/regional recurrence, distant metastasis, or second primary) among patients with human papillomavirus (HPV)–positive squamous cell carcinoma of the oropharynx (SCCOP) following a complete response to chemoradiation therapy. Experimental Design: Between 1999 and 2007, 124 patients with advanced SCCOP (86% with stage IV) and adequate tumor tissue for HPV analysis who were enrolled in one of two consecutive University of Michigan treatment protocols were prospectively included in this study. Patients were categorized as never-, former, or current tobacco users. The primary end points were risk of disease recurrence and time to recurrence; secondary end points were disease-specific survival and overall survival. Results: One hundred and two patients (82.3%) had HPV-positive tumors. Over two thirds (68%) of patients with HPV-positive tumors were tobacco users. Among HPV-positive patients, current tobacco users were at significantly higher risk of disease recurrence than never-tobacco users (hazard ratio, 5.2; confidence interval, 1.1-24.4; P = 0.038). Thirty-five percent of HPV-positive ever tobacco users recurred compared with only 6% of HPV-positive never users and 50% of HPV-negative patients. All HPV-negative patients were tobacco users and had significantly shorter times to recurrence (P = 0.002), and had reduced disease-specific survival (P = 0.004) and overall survival (P < 0.001) compared with HPV-positive patients. Compared with HPV-positive never-tobacco users, those with a tobacco history showed a trend for reduced disease-specific survival (P = 0.064) but not overall survival (P = 0.221). Conclusions: Current tobacco users with advanced, HPV-positive SCCOP are at higher risk of disease recurrence compared with never-tobacco users. Clin Cancer Res; 16(4); 1226–35

Collaboration


Dive into the Felix Y. Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elai Davicioni

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert B. Den

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Paul L. Nguyen

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Rohit Mehra

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard M. Sandler

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge