Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Yarovinsky is active.

Publication


Featured researches published by Felix Yarovinsky.


Nature | 2012

Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth.

Sergei I. Grivennikov; Kepeng Wang; Daniel Mucida; C. Andrew Stewart; Bernd Schnabl; Dominik Jauch; Koji Taniguchi; Guann Yi Yu; Christoph H. Österreicher; Kenneth E. Hung; Christian Datz; Ying Feng; Eric R. Fearon; Mohamed Oukka; Lino Tessarollo; Vincenzo Coppola; Felix Yarovinsky; Hilde Cheroutre; Lars Eckmann; Giorgio Trinchieri; Michael Karin

Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of β-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, ‘inflammatory signature’ genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as ‘tumour-elicited inflammation’. Although infiltrating CD4+ TH1 cells and CD8+ cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (TH17) cells promote tumorigenesis, and a ‘TH17 expression signature’ in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.


Cell Host & Microbe | 2008

Toxoplasma Profilin Is Essential for Host Cell Invasion and TLR11-Dependent Induction of an Interleukin-12 Response

Fabienne Plattner; Felix Yarovinsky; Stéphane Romero; Dominique Didry; Marie-France Carlier; Alan Sher; Dominique Soldati-Favre

Apicomplexan parasites exhibit actin-dependent gliding motility that is essential for migration across biological barriers and host cell invasion. Profilins are key contributors to actin polymerization, and the parasite Toxoplasma gondii possesses a profilin-like protein that is recognized by Toll-like receptor TLR11 in the host innate immune system. Here, we show by conditional disruption of the corresponding gene that T.gondii profilin, while not required for intracellular growth, is indispensable for gliding motility, host cell invasion, active egress from host cells, and virulence in mice. Furthermore, parasites lacking profilin are unable to induce TLR11-dependent production in vitro and in vivo of the defensive host cytokine interleukin-12. Thus, profilin is an essential element of two aspects of T. gondii infection. Like bacterial flagellin, profilin plays a role in motility while serving as a microbial ligand recognized by the host innate immune system.


Journal of Immunology | 2005

Mouse Cathelin-Related Antimicrobial Peptide Chemoattracts Leukocytes Using Formyl Peptide Receptor-Like 1/Mouse Formyl Peptide Receptor-Like 2 as the Receptor and Acts as an Immune Adjuvant

Kahori Kurosaka; Qian Chen; Felix Yarovinsky; Joost J. Oppenheim; De Yang

Mammalian antimicrobial proteins, such as defensins and cathelicidin, have stimulating effects on host leukocytes. Cathelin-related antimicrobial peptide (CRAMP), the orthologue of human cathelicidin/LL-37, is the sole identified murine cathelicidin. CRAMP has been shown to have both antimicrobial and angiogenic activities. However, whether CRAMP, like human cathelicidin/LL-37, also exhibits a direct effect on the migration and function of leukocytes is not known. We have observed that CRAMP, like LL-37, was chemotactic for human monocytes, neutrophils, macrophages, and mouse peripheral blood leukocytes. CRAMP also induced calcium mobilization and the activation of MAPK in monocytes. CRAMP-induced calcium flux in monocytes was desensitized by MMK-1, an agonistic ligand specific for formyl peptide receptor-like-1 (FPRL1), and vice versa, suggesting the use of FPRL1 by CRAMP as a receptor. Furthermore, CRAMP induced the chemotaxis of human embryonic kidney 293 cells transfected with either FPRL1 or mouse formyl peptide receptor-2, the mouse homologue of FPRL1, but not by untransfected parental human embryonic kidney 293 cells, confirming the use of FPRL1/mouse formyl peptide receptor-2 by CRAMP. Injection of CRAMP into mouse air pouches resulted in the recruitment predominantly of neutrophils and monocytes, indicating that CRAMP acts as a chemotactic factor in vivo. Finally, simultaneous administration of OVA with CRAMP to mice promoted both humoral and cellular Ag-specific immune responses. Thus, CRAMP functions as both a chemoattractant for phagocytic leukocytes and an enhancer of adaptive immune response.


Proceedings of the National Academy of Sciences of the United States of America | 2011

γδ intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface

Anisa S. Ismail; Kari M. Severson; Shipra Vaishnava; Cassie L. Behrendt; Xiaofei Yu; Jamaal L. Benjamin; Kelly A. Ruhn; Felix Yarovinsky; Lora V. Hooper

The mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined. Here we show that γδ intraepithelial lymphocytes (γδ IEL) of the small intestine produce innate antimicrobial factors in response to resident bacterial “pathobionts” that penetrate the intestinal epithelium. γδ IEL activation was dependent on epithelial cell-intrinsic MyD88, suggesting that epithelial cells supply microbe-dependent cues to γδ IEL. Finally, γδ T cells protect against invasion of intestinal tissues by resident bacteria specifically during the first few hours after bacterial encounter, indicating that γδ IEL occupy a unique temporal niche among intestinal immune defenses. Thus, γδ IEL detect the presence of invading bacteria through cross-talk with neighboring epithelial cells and are an essential component of the hierarchy of immune defenses that maintain homeostasis with the intestinal microbiota.


Nature Reviews Immunology | 2014

Innate immunity to Toxoplasma gondii infection

Felix Yarovinsky

Toxoplasma gondii is a protozoan parasite of global importance. In the laboratory setting, T. gondii is frequently used as a model pathogen to study mechanisms of T helper 1 (TH1) cell-mediated immunity to intracellular infections. However, recent discoveries have shown that innate type 1 immune responses that involve interferon-γ (IFNγ)-producing natural killer (NK) cells and neutrophils, rather than IFNγ-producing T cells, predetermine host resistance to T. gondii. This Review summarizes the Toll-like receptor (TLR)-dependent mechanisms that are responsible for parasite recognition and for the induction of IFNγ production by NK cells, as well as the emerging data about the TLR-independent mechanisms that lead to the IFNγ-mediated elimination of T. gondii.


Cell Host & Microbe | 2009

Gut Commensal Bacteria Direct a Protective Immune Response against Toxoplasma gondii

Alicia Benson; Reed Pifer; Cassie L. Behrendt; Lora V. Hooper; Felix Yarovinsky

Toxoplasma gondii is a universally distributed pathogen that infects over one billion people worldwide. Host resistance to this protozoan parasite depends on a Th1 immune response with potent production of the cytokines interleukin-12 and interferon gamma. Although Toll-like receptor 11 (TLR11) plays a major role in controlling Th1 immunity to this pathogen in mice, this innate immune receptor is nonfunctional in humans, and the mechanisms of TLR11-independent sensing of T. gondii remain elusive. Here, we show that oral infection by T. gondii triggers a TLR11-independent but MyD88-dependent Th1 response that is impaired in TLR2xTLR4 double knockout and TLR9 single knockout mice. These mucosal innate and adaptive immune responses to T. gondii rely on the indirect stimulation of dendritic cells by normal gut microflora. Thus, our results reveal that gut commensal bacteria can serve as molecular adjuvants during parasitic infection, providing indirect immunostimulation that protects against T. gondii in the absence of TLR11.


PLOS Pathogens | 2011

Norovirus Regulation of the Innate Immune Response and Apoptosis Occurs via the Product of the Alternative Open Reading Frame 4

Nora McFadden; Dalan Bailey; Guia Carrara; Alicia Benson; Yasmin Chaudhry; Amita Shortland; Jonathan L. Heeney; Felix Yarovinsky; Peter Simmonds; Andrew Macdonald; Ian Goodfellow

Small RNA viruses have evolved many mechanisms to increase the capacity of their short genomes. Here we describe the identification and characterization of a novel open reading frame (ORF4) encoded by the murine norovirus (MNV) subgenomic RNA, in an alternative reading frame overlapping the VP1 coding region. ORF4 is translated during virus infection and the resultant protein localizes predominantly to the mitochondria. Using reverse genetics we demonstrated that expression of ORF4 is not required for virus replication in tissue culture but its loss results in a fitness cost since viruses lacking the ability to express ORF4 restore expression upon repeated passage in tissue culture. Functional analysis indicated that the protein produced from ORF4 antagonizes the innate immune response to infection by delaying the upregulation of a number of cellular genes activated by the innate pathway, including IFN-Beta. Apoptosis in the RAW264.7 macrophage cell line was also increased during virus infection in the absence of ORF4 expression. In vivo analysis of the WT and mutant virus lacking the ability to express ORF4 demonstrated an important role for ORF4 expression in infection and virulence. STAT1-/- mice infected with a virus lacking the ability to express ORF4 showed a delay in the onset of clinical signs when compared to mice infected with WT virus. Quantitative PCR and histopathological analysis of samples from these infected mice demonstrated that infection with a virus not expressing ORF4 results in a delayed infection in this system. In light of these findings we propose the name virulence factor 1, VF1 for this protein. The identification of VF1 represents the first characterization of an alternative open reading frame protein for the calicivirus family. The immune regulatory function of the MNV VF1 protein provide important perspectives for future research into norovirus biology and pathogenesis.


PLOS Pathogens | 2011

Toxoplasma gondii Rhoptry Kinase ROP16 Activates STAT3 and STAT6 Resulting in Cytokine Inhibition and Arginase-1-Dependent Growth Control

Barbara A. Butcher; Leah M. Rommereim; Sung Guk Kim; Kirk J. Maurer; Felix Yarovinsky; De’Broski R. Herbert; David J. Bzik; Eric Y. Denkers

The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection.


Journal of Immunology | 2010

Redundant and Pathogenic Roles for IL-22 in Mycobacterial, Protozoan, and Helminth Infections

Mark S. Wilson; Carl G. Feng; Daniel L. Barber; Felix Yarovinsky; Allen W. Cheever; Alan Sher; Michael E. Grigg; Mary Collins; Lynette A. Fouser; Thomas A. Wynn

IL-22 is a member of the IL-10 cytokine family and signals through a heterodimeric receptor composed of the common IL-10R2 subunit and the IL-22R subunit. IL-10 and IL-22 both activate the STAT3 signaling pathway; however, in contrast to IL-10, relatively little is known about IL-22 in the host response to infection. In this study, using IL-22−/− mice, neutralizing Abs to IL-22, or both, we show that IL-22 is dispensable for the development of immunity to the opportunistic pathogens Toxoplasma gondii and Mycobacterium avium when administered via the i.p. or i.v. route, respectively. IL-22 also played little to no role in aerosol infections with Mycobacterium tuberculosis and in granuloma formation and hepatic fibrosis following chronic percutaneous infections with the helminth parasite Schistosoma mansoni. A marked pathogenic role for IL-22 was, however, identified in toxoplasmosis when infections were established by the natural oral route. Anti–IL-22 Ab-treated mice developed significantly less intestinal pathology than control Ab-treated mice even though both groups displayed similar parasite burdens. The decreased gut pathology was associated with reduced IL-17A, IL-17F, TNF-α, and IFN-γ expression. In contrast to the prior observations of IL-22 protective effects in the gut, these distinct findings with oral T. gondii infection demonstrate that IL-22 also has the potential to contribute to pathogenic inflammation in the intestine. The IL-22 pathway has emerged as a possible target for control of inflammation in certain autoimmune diseases. Our findings suggest that few if any infectious complications would be expected with the suppression of IL-22 signaling.


PLOS Pathogens | 2012

Therapeutic Helminth Infection of Macaques with Idiopathic Chronic Diarrhea Alters the Inflammatory Signature and Mucosal Microbiota of the Colon

Mara J. Broadhurst; Amir Ardeshir; Bittoo Kanwar; Julie Mirpuri; Uma Mahesh Gundra; Jacqueline M. Leung; Kirsten E. Wiens; Ivan Vujkovic-Cvijin; Charles C. Kim; Felix Yarovinsky; Nicholas W. Lerche; Joseph M. McCune; P'ng Loke

Idiopathic chronic diarrhea (ICD) is a leading cause of morbidity amongst rhesus monkeys kept in captivity. Here, we show that exposure of affected animals to the whipworm Trichuris trichiura led to clinical improvement in fecal consistency, accompanied by weight gain, in four out of the five treated monkeys. By flow cytometry analysis of pinch biopsies collected during colonoscopies before and after treatment, we found an induction of a mucosal T(H)2 response following helminth treatment that was associated with a decrease in activated CD4(+) Ki67+ cells. In parallel, expression profiling with oligonucleotide microarrays and real-time PCR analysis revealed reductions in T(H)1-type inflammatory gene expression and increased expression of genes associated with IgE signaling, mast cell activation, eosinophil recruitment, alternative activation of macrophages, and worm expulsion. By quantifying bacterial 16S rRNA in pinch biopsies using real-time PCR analysis, we found reduced bacterial attachment to the intestinal mucosa post-treatment. Finally, deep sequencing of bacterial 16S rRNA revealed changes to the composition of microbial communities attached to the intestinal mucosa following helminth treatment. Thus, the genus Streptophyta of the phylum Cyanobacteria was vastly increased in abundance in three out of five ICD monkeys relative to healthy controls, but was reduced to control levels post-treatment; by contrast, the phylum Tenericutes was expanded post-treatment. These findings suggest that helminth treatment in primates can ameliorate colitis by restoring mucosal barrier functions and reducing overall bacterial attachment, and also by altering the communities of attached bacteria. These results also define ICD in monkeys as a tractable preclinical model for ulcerative colitis in which these effects can be further investigated.

Collaboration


Dive into the Felix Yarovinsky's collaboration.

Top Co-Authors

Avatar

Alan Sher

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alicia Benson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Carolyn R. Sturge

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Julie Mirpuri

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Megan Raetz

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lora V. Hooper

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Reed Pifer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cara L. Wilhelm

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elise Burger

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Sara Hieny

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge