Femke Broekhuis
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Femke Broekhuis.
Journal of Animal Ecology | 2013
Femke Broekhuis; Gabriele Cozzi; Marion Valeix; John W. McNutt; David W. Macdonald
1. Risks of predation or interference competition are major factors shaping the distribution of species. An animals response to risk can either be reactive, to an immediate risk, or predictive, based on preceding risk or past experiences. The manner in which animals respond to risk is key in understanding avoidance, and hence coexistence, between interacting species. 2. We investigated whether cheetahs (Acinonyx jubatus), known to be affected by predation and competition by lions (Panthera leo) and spotted hyaenas (Crocuta crocuta), respond reactively or predictively to the risks posed by these larger carnivores. 3. We used simultaneous spatial data from Global Positioning System (GPS) radiocollars deployed on all known social groups of cheetahs, lions and spotted hyaenas within a 2700 km(2) study area on the periphery of the Okavango Delta in northern Botswana. The response to risk of encountering lions and spotted hyaenas was explored on three levels: short-term or immediate risk, calculated as the distance to the nearest (contemporaneous) lion or spotted hyaena, long-term risk, calculated as the likelihood of encountering lions and spotted hyaenas based on their cumulative distributions over a 6-month period and habitat-associated risk, quantified by the habitat used by each of the three species. 4. We showed that space and habitat use by cheetahs was similar to that of lions and, to a lesser extent, spotted hyaenas. However, cheetahs avoided immediate risks by positioning themselves further from lions and spotted hyaenas than predicted by a random distribution. 5. Our results suggest that cheetah spatial distribution is a hierarchical process, first driven by resource acquisition and thereafter fine-tuned by predator avoidance; thus suggesting a reactive, rather than a predictive, response to risk.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Sarah M. Durant; Nicholas Mitchell; Rosemary J. Groom; Nathalie Pettorelli; Audrey Ipavec; Andrew P. Jacobson; Rosie Woodroffe; Monika Böhm; Luke T. B. Hunter; Matthew S. Becker; Femke Broekhuis; Sultana Bashir; Leah Andresen; Ortwin Aschenborn; Mohammed Beddiaf; Farid Belbachir; Amel Belbachir-Bazi; Ali Berbash; Iracelma Brandao de Matos Machado; Christine Breitenmoser; Monica Chege; Deon Cilliers; Harriet Davies-Mostert; Amy J. Dickman; Fabiano Ezekiel; Mohammad S. Farhadinia; Paul J. Funston; Philipp Henschel; Jane Horgan; Hans H. De Iongh
Significance Here, we compile and present the most comprehensive data available on cheetah distribution and status. Our analysis shows dramatic declines of cheetah across its distributional range. Most cheetah occur outside protected areas, where they are exposed to multiple threats, but there is little information on population status. Simulation modeling shows that, where cheetah population growth rates are suppressed outside protected areas, extinction risk increases markedly. This result can be generalized to other “protection-reliant” species, and a decision tree is provided to improve their extinction risk estimation. Ultimately, the persistence of protection-reliant species depends on their survival outside and inside protected areas and requires a holistic approach to conservation that engages rather than alienates local communities. Establishing and maintaining protected areas (PAs) are key tools for biodiversity conservation. However, this approach is insufficient for many species, particularly those that are wide-ranging and sparse. The cheetah Acinonyx jubatus exemplifies such a species and faces extreme challenges to its survival. Here, we show that the global population is estimated at ∼7,100 individuals and confined to 9% of its historical distributional range. However, the majority of current range (77%) occurs outside of PAs, where the species faces multiple threats. Scenario modeling shows that, where growth rates are suppressed outside PAs, extinction rates increase rapidly as the proportion of population protected declines. Sensitivity analysis shows that growth rates within PAs have to be high if they are to compensate for declines outside. Susceptibility of cheetah to rapid decline is evidenced by recent rapid contraction in range, supporting an uplisting of the International Union for the Conservation of Nature (IUCN) Red List threat assessment to endangered. Our results are applicable to other protection-reliant species, which may be subject to systematic underestimation of threat when there is insufficient information outside PAs. Ultimately, conserving many of these species necessitates a paradigm shift in conservation toward a holistic approach that incentivizes protection and promotes sustainable human–wildlife coexistence across large multiple-use landscapes.
PLOS ONE | 2012
Steffen Grünewälder; Femke Broekhuis; David W. Macdonald; Alan Wilson; John W. McNutt; John Shawe-Taylor; Stephen Hailes
We propose a new method, based on machine learning techniques, for the analysis of a combination of continuous data from dataloggers and a sampling of contemporaneous behaviour observations. This data combination provides an opportunity for biologists to study behaviour at a previously unknown level of detail and accuracy; however, continuously recorded data are of little use unless the resulting large volumes of raw data can be reliably translated into actual behaviour. We address this problem by applying a Support Vector Machine and a Hidden-Markov Model that allows us to classify an animals behaviour using a small set of field observations to calibrate continuously recorded activity data. Such classified data can be applied quantitatively to the behaviour of animals over extended periods and at times during which observation is difficult or impossible. We demonstrate the usefulness of the method by applying it to data from six cheetah (Acinonyx jubatus) in the Okavango Delta, Botswana. Cumulative activity data scores were recorded every five minutes by accelerometers embedded in GPS radio-collars for around one year on average. Direct behaviour sampling of each of the six cheetah were collected in the field for comparatively short periods. Using this approach we are able to classify each five minute activity score into a set of three key behaviour (feeding, mobile and stationary), creating a continuous behavioural sequence for the entire period for which the collars were deployed. Evaluation of our classifier with cross-validation shows the accuracy to be , but that the accuracy for individual classes is reduced with decreasing sample size of direct observations. We demonstrate how these processed data can be used to study behaviour identifying seasonal and gender differences in daily activity and feeding times. Results given here are unlike any that could be obtained using traditional approaches in both accuracy and detail.
Journal of Animal Ecology | 2013
Gabriele Cozzi; Femke Broekhuis; J. Weldon McNutt; Bernhard Schmid
1. Physical barriers contribute to habitat fragmentation, influence species distribution and ranging behaviour, and impact long-term population viability. Barrier permeability varies among species and can potentially impact the competitive balance within animal communities by differentially affecting co-occurring species. The influence of barriers on the spatial distribution of species within whole communities has nonetheless received little attention. 2. During a 4-year period, we studied the influence of a fence and rivers, two landscape features that potentially act as barriers on space use and ranging behaviour of lions Panthera leo, spotted hyenas Crocuta crocuta, African wild dogs Lycaon pictus and cheetahs Acinonyx jubatus in Northern Botswana. We compared the tendencies of these species to cross the barriers using data generated from GPS-radio collars fitted to a total of 35 individuals. Barrier permeability was inferred by calculating the number of times animals crossed a barrier vs. the number of times they did not cross. Finally, based on our results, we produced a map of connectivity for the broader landscape system. 3. Permeability varied significantly between fence and rivers and among species. The fence represented an obstacle for lions (permeability = 7.2%), while it was considerably more permeable for hyenas (35.6%) and wild dogs and cheetahs (≥ 50%). In contrast, the rivers and associated floodplains were relatively permeable to lions (14.4%) while they represented a nearly impassable obstacle for the other species (<2%). 4. The aversion of lions to cross the fence resulted in a relatively lion-free habitat patch on one side of the fence, which might provide a potential refuge for other species. For instance, the competitively inferior wild dogs used this refuge significantly more intensively than the side of the fence with a high presence of lions. 5. We showed that the influence of a barrier on the distribution of animals could potentially result in a broad-scale modification of community structure and ecology within a guild of co-occurring species. As habitat fragmentation increases, understanding the impact of barriers on species distributions is thus essential for the implementation of landscape-scale management strategies, the development and maintenance of corridors and the enhancement of connectivity.
Journal of Applied Ecology | 2015
Sarah M. Durant; Matthew S. Becker; Scott Creel; Sultana Bashir; Amy J. Dickman; Roseline C. Beudels‐Jamar; Laly L. Lichtenfeld; Ray Hilborn; Jake Wall; George Wittemyer; Lkhagvasuren Badamjav; Stephen M Blake; Luigi Boitani; Christine Breitenmoser; Femke Broekhuis; David Christianson; Gabriele Cozzi; Tim R.B. Davenport; James Deutsch; Pierre Devillers; Luke Dollar; Stephanie Dolrenry; Iain Douglas-Hamilton; Egil Dröge; Emily FitzHerbert; Charles Foley; Leela Hazzah; J. Grant C. Hopcraft; Dennis Ikanda; Andrew P. Jacobson
In dryland ecosystems, mobility is essential for both wildlife and people to access unpredictable and spatially heterogeneous resources, particularly in the face of climate change. Fences can prevent connectivity vital for this mobility. There are recent calls for large-scale barrier fencing interventions to address human–wildlife conflict and illegal resource extraction. Fencing has costs and benefits to people and wildlife. However, the evidence available for facilitating sound decision-making for fencing initiatives is limited, particularly for drylands. We identify six research areas that are key to informing evaluations of fencing initiatives: economics, edge permeability, reserve design, connectivity, ecosystem services and communities. Policy implications. Implementing this research agenda to evaluate fencing interventions in dryland ecosystems will enable better management and policy decisions. The United Nations Conventions on Migratory Species (CMS) and to Combat Desertification (UNCCD) are appropriate international agreements for moving this agenda forward and leading the development of policies and guidelines on fencing in drylands.
PLOS ONE | 2016
Femke Broekhuis; Arjun M. Gopalaswamy
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
Ecology and Evolution | 2017
Femke Broekhuis; Samuel A. Cushman; Nicholas B. Elliot
Abstract Human–carnivore conflict is a primary driver of carnivore declines worldwide and resolving these conflicts is a conservation priority. However, resources to mitigate conflicts are limited and should be focused on areas of highest priority. We conducted 820 semistructured interviews with community members living within Kenyas Maasai Mara ecosystem. A multiscale analysis was used to determine the influence of husbandry and environmental factors on livestock depredation inside livestock enclosures (bomas). Areas with a high proportion of closed habitat and protected areas had the highest risk of depredation. Depredation was most likely to occur at weak bomas and at households where there were fewer dogs. We used the results to identify potential conflict hotspots by mapping the probability of livestock depredation across the landscape. 21.4% of the landscape was classified as high risk, and within these areas, 53.4% of the households that were interviewed had weak bomas. Synthesis and applications. With limited resources available to mitigate human–carnivore conflicts, it is imperative that areas are identified where livestock is most at risk of depredation. Focusing mitigation measures on high‐risk areas may reduce conflict and lead to a decrease in retaliatory killings of predators.
Ecology and Evolution | 2018
Femke Broekhuis
Abstract Recruitment is a critical parameter governing population dynamics and influences population persistence. Understanding the drivers of recruitment is therefore important for conservation, especially for long‐lived mammals such as large carnivores, which have low reproductive rates, rendering them prone to extinction. Using cheetahs (Acinonyx jubatus) as a model species, I investigated the variation in cub recruitment in relation to habitat and the abundance of tourists and predators. Per litter, female cheetahs on average raised 1.71 ± 1.35 cubs to independence, but this varied depending on the presence of open habitat and the abundance of tourists, both of which had a negative effect on cub recruitment. More specifically, female cheetahs that were mostly found in open habitats on average raised 1.69 ± 0.14 cubs per litter to independence compared to 3.04 ± 0.26 cubs in denser habitat. Similarly, female cheetahs that were exposed to high tourist abundance on average raised 0.21 ± 0.72 cubs to independence compared to 2.32 ± 0.11 cubs in low tourism areas. Neither lion nor spotted hyaena abundance had an impact on the number of cubs that were recruited. Based on these findings, I recommend that the importance of a heterogeneous environment should be taken into consideration in habitat management, restoration efforts, and reintroduction programs. In addition, tourist quotas should be put in place in high visitation areas and strict wildlife viewing guidelines, such as number of vehicles, tourist behavior, time spent, and distance to a sighting, should be enforced. Cub recruitment is an important component of species persistence and incorporating these findings could aid conservation efforts for species that are increasingly under threat.
Ecology and Evolution | 2018
Britt Klaassen; Femke Broekhuis
Abstract Animals select habitats that will ultimately optimize their fitness through access to favorable resources, such as food, mates, and breeding sites. However, access to these resources may be limited by bottom‐up effects, such as availability, and top‐down effects, such as risk avoidance and competition, including that with humans. Competition between wildlife and people over resources, specifically over space, has played a significant role in the worldwide decrease in large carnivores. The goal of this study was to determine the habitat selection of cheetahs (Acinonyx jubatus) in a human‐wildlife landscape at multiple spatial scales. Cheetahs are a wide‐ranging, large carnivore, whose significant decline is largely attributed to habitat loss and fragmentation. It is believed that 77% of the global cheetah population ranges outside protected areas, yet little is known about cheetahs’ resource use in areas where they co‐occur with people. The selection, or avoidance, of three anthropogenic variables (human footprint density, distance to main roads and wildlife areas) and five environmental variables (open habitat, semiclosed habitat, edge density, patch density and slope), at multiple spatial scales, was determined by analyzing collar data from six cheetahs. Cheetahs selected variables at different scales; anthropogenic variables were selected at broader scales (720–1440 m) than environmental variables (90–180 m), suggesting that anthropogenic pressures affect habitat selection at a home‐range level, whilst environmental variables influence site‐level habitat selection. Cheetah presence was best explained by human presence, wildlife areas, semiclosed habitat, edge density and slope. Cheetahs showed avoidance for humans and steep slopes and selected for wildlife areas and areas with high proportions of semiclosed habitat and edge density. Understanding a species’ resource requirements, and how these might be affected by humans, is crucial for conservation. Using a multiscale approach, we provide new insights into the habitat selection of a large carnivore living in a human‐wildlife landscape.
Journal of Wildlife Diseases | 2017
Anne-Lise Chaber; Gabriele Cozzi; Femke Broekhuis; Robyn Hartley; John W. McNutt
Abstract The recent increase in the creation of transboundary protected areas and wildlife corridors between them lends importance to information on pathogen prevalence and transmission among wildlife species that will become connected. One such initiative is the Kavango Zambezi Transfrontier Conservation Area of which Botswanas Okavango Delta constitutes a major contribution for wildlife and ecosystems. Between 2008 and 2011, we collected serum samples from 14 lions (Panthera leo), four leopards (Panthera pardus), 19 spotted hyenas (Crocuta crocuta), and six cheetahs (Acinonyx jubatus) in the Okavango. Samples were tested for antibodies against canine distemper virus (CDV), feline panleukopenia virus, enteric coronavirus, feline calicivirus, feline herpesvirus (FHV-1), and feline immunodeficiency virus (FIV). Evidence of exposure to all of these pathogens was found, to varying degrees, in at least one of the species sampled. High antibody prevalence (>90%) was only found to FHV-1 and FIV in lions. Only hyenas (26%, 5/19) were positive for CDV antibody. Except for one case, all individuals displayed physical conditions consistent with normal health for ≥12 mo following sampling. Our results emphasize the need for a comprehensive, multispecies approach to disease monitoring and the development of coordinated management strategies for subpopulations likely to be connected in transboundary initiatives.