Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Femke Broere is active.

Publication


Featured researches published by Femke Broere.


Vaccine | 2010

Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen

Bram Slütter; Suzanne M. Bal; Chantal Keijzer; Roel Mallants; Niels Hagenaars; Ivo Que; Eric L. Kaijzel; Willem van Eden; Patrick Augustijns; Clemens W.G.M. Löwik; Joke A. Bouwstra; Femke Broere; Wim Jiskoot

Nasal vaccination is a promising, needle-free alternative to classical vaccination. Nanoparticulate delivery systems have been reported to overcome the poor immunogenicity of nasally administered soluble antigens, but the characteristics of the ideal particle are unknown. This study correlates differences in physicochemical characteristics of nanoparticles to their adjuvant effect, using ovalbumin (OVA)-loaded poly(lactic-co-glycolic acid) nanoparticles (PLGA NP), N-trimethyl chitosan (TMC) based NP (TMC NP) and TMC-coated PLGA NP (PLGA/TMC NP). PLGA NP and PLGA/TMC NP were prepared by emulsification/solvent extraction and TMC NP by ionic complexation. The NP were characterized physicochemically. Their toxicity and interaction with and stimulation of monocyte derived dendritic cells (DC) were tested in vitro. Furthermore, the residence time and the immunogenicity (serum IgG titers and secretory IgA levels in nasal washes) of the nasally applied OVA formulations were assessed in Balb/c mice. All NP were similar in size, whereas only PLGA NP carried a negative zeta potential. The NP were non-toxic to isolated nasal epithelium. Only TMC NP increased the nasal residence time of OVA compared to OVA administered in PBS and induced DC maturation. After i.m. administration all NP systems induced higher IgG titers than OVA alone, PLGA NP and TMC NP being superior to PLGA/TMC NP. Nasal immunization with the slow antigen releasing particles, PLGA NP and PLGA/TMC NP, did not induce detectable antibody titers. In contrast, nasal immunization with the positively charged, fast antigen releasing TMC NP led to high serum antibody titers and sIgA levels. In conclusion, particle charge and antigen release pattern of OVA-loaded NP has to be adapted to the intended route of administration. For nasal vaccination, TMC NP, releasing their content within several hours, being mucoadhesive and stimulating the maturation of DC, were superior to PLGA NP and PLGA/TMC NP which lacked some or all of these characteristics.


International Journal of Pharmaceutics | 2011

Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes

Maria Coimbra; Benedetta Isacchi; Louis van Bloois; Javier Sastre Toraño; Aldo Ket; Xiaojie Wu; Femke Broere; Josbert M. Metselaar; Cristianne J.F. Rijcken; Gert Storm; Rita Bilia; Raymond M. Schiffelers

Natural bioactive compounds have been studied for a long time for their chemopreventive and therapeutic potential in several chronic inflammatory diseases, including cancer. However, their physicochemical properties generally result in poor chemical stability and lack of in vivo bioavailability. Very few human clinical trials have addressed absorption, distribution, metabolism, and excretion of these compounds in relation to efficacy. This limits the use of these valuable natural compounds in the clinic. In this study, we examined caffeic acid (derivatives), carvacrol (derivatives), thymol, pterostilbene (derivatives), and N-(3-oxo-dodecanoyl)-l-homoserine lactone. These are natural compounds with strong anti-inflammatory properties derived from plants and bacteria. However, these compounds have poor water solubility or are chemically unstable. To overcome these limitations we have prepared liposomal formulations. Our results show that lipophilic 3-oxo-C(12)-homoserine lactone and stilbene derivatives can be loaded into liposomal lipid bilayer with efficiencies of 50-70%. Thereby, the liposomes solubilize these compounds, allowing intravenous administration without use of solvents. When compounds could not be loaded into the lipid bilayer (carvacrol and thymol) or are rapidly extracted from the liposomes in the presence of serum albumin (3-oxo-C(12)-homoserine lactone and pterostilbene derivatives), derivatization of the compound into a water-soluble prodrug was shown to improve loading efficiency and encapsulation stability. The phosphate forms of carvacrol and pterostilbene were loaded into the aqueous interior of the liposomes and encapsulation was unaffected by the presence of serum albumin. Chemical instability of resveratrol was improved by liposome-encapsulation, preventing inactivating cis-trans isomerization. For caffeic acid, liposomal encapsulation did not prevent oxidation into a variety of products. Still, by derivatization into a phenyl ester, the compound could be stably encapsulated without chemical degradation. Despite the instability of liposome-association of 3-oxo-C(12)-homoserine lactone and resveratrol, intravenous administration of these compounds inhibited tumor growth for approximately 70% in a murine tumor model, showing that simple solubilization can have important therapeutic benefits.


Frontiers in Immunology | 2012

The anti-inflammatory mechanisms of Hsp70

Thiago J. Borges; Lotte Wieten; Martijn J. C. van Herwijnen; Femke Broere; Ruurd van der Zee; Cristina Beatriz Cazabuena Bonorino; Willem van Eden

Immune responses to heat shock proteins (Hsp) develop in virtually all inflammatory diseases; however, the significance of such responses is only now becoming clear. In experimental disease models, Hsp administration can prevent or arrest inflammatory damage, and in initial clinical trials in patients with chronic inflammatory diseases, Hsp peptides have been shown to promote the production of anti-inflammatory cytokines, indicating immunoregulatory potential of Hsp. Therefore, the presence of immune responses to Hsp in inflammatory diseases can be seen as an attempt of the immune system to correct the inflammatory condition. Hsp70 can modulate inflammatory responses in models of arthritis, colitis and graft rejection, and the mechanisms underlying this effect are now being elucidated. Incubation with microbial Hsp70 was seen to induce tolerogenic dendritic cells (DCs) and to promote a suppressive phenotype in myeloid-derived suppressor cells and monocytes. These DC could induce regulatory T cells (Tregs), independently of the antigens they presented. Some Hsp70 family members are associated with autophagy, leading to a preferential uploading of Hsp70 peptides in MHC class II molecules of stressed cells. Henceforth, conserved Hsp70 peptides may be presented in these situations and constitute targets of Tregs, contributing to downregulation of inflammation. Finally, an interfering effect in multiple intracellular inflammatory signaling pathways is also known for Hsp70. Altogether it seems attractive to use Hsp70, or its derivative peptides, for modulation of inflammation. This is a physiological immunotherapy approach, without the immediate necessity of defining disease-specific auto-antigens. In this article, we present the evidence on anti-inflammatory effects of Hsp70 and discuss the need for experiments that will be crucial for the further exploration of the immunosuppressive potential of this protein.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis

Martijn J. C. van Herwijnen; Lotte Wieten; Ruurd van der Zee; Peter van Kooten; Josée P.A. Wagenaar-Hilbers; Aad Hoek; Ineke den Braber; Stephen M. Anderton; Mahavir Singh; Hugo D. Meiring; Cécile A. C. M. van Els; Willem van Eden; Femke Broere

Reestablishing self-tolerance in autoimmunity is thought to depend on self-reactive regulatory T cells (Tregs). Exploiting these antigen-specific regulators is hampered by the obscure nature of disease-relevant autoantigens. We have uncovered potent disease-suppressive Tregs recognizing Heat Shock Protein (Hsp) 70 self-antigens, enabling selective activity in inflamed tissues. Hsp70 is a major contributor to the MHC class II ligandome. Here we show that a conserved Hsp70 epitope (B29) is present in murine MHC class II and that upon transfer, B29-induced CD4+CD25+Foxp3+ T cells suppress established proteoglycan-induced arthritis in mice. These self-antigen–specific Tregs were activated in vivo, and when using Lymphocyte Activation Gene-3 as a selection marker, as few as 4,000 cells sufficed. Furthermore, depletion of transferred Tregs abrogated disease suppression. Transferred cells exhibited a stable phenotype and were found in joints and draining lymph nodes up to 2 mo after transfer. Given that (i) B29 administration by itself suppressed disease, (ii) our findings were made with wild-type (T-cell receptor nontransgenic) Tregs, and (iii) the B29 human homolog is presented by HLA class II, we are nearing translation of antigen-specific Treg activation as a promising intervention for chronic inflammatory diseases.


FEBS Letters | 2007

Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators?

Lotte Wieten; Femke Broere; Ruurd van der Zee; Elles klein Koerkamp; Josée P. A. Wagenaar; Willem van Eden

T cell responses to heat shock proteins (HSP) have disease suppressive activities through production of anti‐inflammatory cytokines in patients and in models of inflammatory diseases. There is evidence that the anti‐inflammatory activity of HSP‐specific T cells depends on their recognition of endogenous HSP epitopes as expressed by stressed cells at sites of inflammation. Previously, we have demonstrated that such T cells can be induced by conserved sequences of microbial HSP. Now we propose that drug induced up‐regulation of endogenous HSP can contribute to anti‐inflammatory T cell regulation.


Archive | 2011

T cell subsets and T cell-mediated immunity

Femke Broere; Sergei G. Apasov; Michail Sitkovsky; Willem van Eden

T CELL-MEDIATED IMMUNITY is an adaptive process of developing antigen (Ag)-specific T LYMPHOCYTES to eliminate viral, bacterial, or parasitic infections or malignant cells. T CELL-MEDIATED IMMUNITY can also involve aberrant recognition of self-Ag, leading to autoimmune inflammatory diseases. The Ag SPECIFICITY of T LYMPHOCYTES is based on recognition through the T CELL RECEPTOR (TCR) of unique antigenic peptides presented by MHC molecules on Ag-presenting cells (APC). T CELL-MEDIATED IMMUNITY is the central element of the adaptive immune system and includes a primary response by naive T cells, effector functions by activated T cells, and persistence of Ag-specific memory T cells. T CELL-MEDIATED IMMUNITY is part of a complex and coordinated immune response that includes other EFFECTOR CELLS such as MACROPHAGES, NATURAL KILLER CELLS, MAST CELLS, BASOPHILS, EOSINOPHILS, and NEUTROPHILS.


Cell Stress & Chaperones | 2012

A case of mistaken identity: HSPs are no DAMPs but DAMPERs

Willem van Eden; Rachel Spiering; Femke Broere; Ruurd van der Zee

Until recently, the immune system was seen solely as a defense system with its primary task being the elimination of unwanted microbial invaders. Currently, however, the functional significance of the immune system has obtained a much wider perspective, to include among others the maintenance and restoration of homeostasis following tissue damage. In this latter aspect, there is a growing interest in the identification of molecules involved, such as the so-called danger or damage-associated molecular patterns (DAMPs), also called alarmins. Since heat shock proteins are archetypical molecules produced under stressful conditions, such as tissue damage or inflammation, they are frequently mentioned as prime examples of DAMPs (Bianchi, J Leukoc Biol 81:1–5, 2007; Kono and Rock, Nat Rev Immunol 8:279–289, 2008; Martin-Murphy et al., Toxicol Lett 192:387–394, 2010). See for instance also a recent review (Chen and Nunez, Science 298:1395–1401, 2010). Contrary to this description, we recently presented some of the arguments against a role of heat shock protein as DAMPs (Broere et al., Nat Rev Immunol 11:565-c1, 2011). With this perspective and reflection article, we hope to elaborate on this debate and provide additional thoughts to further ignite this discussion on this critical and evolving issue.


PLOS ONE | 2011

PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity

Chantal Keijzer; Bram Slütter; Ruurd van der Zee; Wim Jiskoot; Willem van Eden; Femke Broere

Development of vaccines in autoimmune diseases has received wide attention over the last decade. However, many vaccines showed limited clinical efficacy. To enhance vaccine efficacy in infectious diseases, biocompatible and biodegradable polymeric nanoparticles have gained interest as antigen delivery systems. We investigated in mice whether antigen-encapsulated PLGA (poly-lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) or TMC-TPP (tri-polyphosphate) nanoparticles can also be used to modulate the immunological outcome after nasal vaccination. These three nanoparticles enhanced the antigen presentation by dendritic cells, as shown by increased in vitro and in vivo CD4+ T-cell proliferation. However, only nasal PLGA nanoparticles were found to induce an immunoregulatory response as shown by enhanced Foxp3 expression in the nasopharynx associated lymphoid tissue and cervical lymph nodes. Nasal administration of OVA-containing PLGA particle resulted in functional suppression of an OVA-specific Th-1 mediated delayed-type hypersensitivity reaction, while TMC-TPP nanoparticles induced humoral immunity, which coincided with the enhanced generation of OVA-specific B-cells in the cervical lymph nodes. Intranasal treatment with Hsp70-mB29a peptide-loaded PLGA nanoparticles suppressed proteoglycan-induced arthritis, leading to a significant reduction of disease. We have uncovered a role for PLGA nanoparticles to enhance CD4+ T-cell mediated immunomodulation after nasal application. The exploitation of this differential regulation of nanoparticles to modulate nasal immune responses can lead to innovative vaccine development for prophylactic or therapeutic vaccination in infectious or autoimmune diseases.


PLOS ONE | 2009

IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis.

Lotte Wieten; Suzanne E. Berlo; Corlinda ten Brink; Peter van Kooten; Mahavir Singh; Ruurd van der Zee; Tibor T. Glant; Femke Broere; Willem van Eden

Background The anti-inflammatory capacity of heat shock proteins (HSP) has been demonstrated in various animal models of inflammatory diseases and in patients. However, the mechanisms underlying this anti-inflammatory capacity are poorly understood. Therefore, the possible protective potential of HSP70 and its mechanisms were studied in proteoglycan (PG) induced arthritis (PGIA), a chronic and relapsing, T cell mediated murine model of arthritis. Methodology/Principal Findings HSP70 immunization, 10 days prior to disease induction with PG, inhibited arthritis both clinically and histologically. In addition, it significantly reduced PG-specific IgG2a but not IgG1 antibody production. Furthermore, IFN-γ and IL-10 production upon in vitro restimulation with HSP70 was indicative of the induction of an HSP70-specific T cell response in HSP70 immunized mice. Remarkably, HSP70 treatment also modulated the PG-specific T cell response, as shown by the increased production of IL-10 and IFN-γ upon in vitro PG restimulation. Moreover, it increased IL-10 mRNA expression in CD4+CD25+ cells. HSP70 vaccination did not suppress arthritis in IL-10−/− mice, indicating the crucial role of IL-10 in the protective effect. Conclusions/Significance In conclusion, a single mycobacterial HSP70 immunization can suppress inflammation and tissue damage in PGIA and results in an enhanced regulatory response as shown by the antigen-specific IL-10 production. Moreover, HSP70 induced protection is critically IL-10 dependent.


Mucosal Immunology | 2009

Cyclooxygenase-2 in mucosal DC mediates induction of regulatory T cells in the intestine through suppression of IL-4

Femke Broere; M F du Pré; L A van Berkel; Johan Garssen; C Schmidt-Weber; Bart N. Lambrecht; Rudolf W. Hendriks; Edward E. S. Nieuwenhuis; Georg Kraal; J N Samsom

Oral intake of protein leads to tolerance through the induction of regulatory T cells (Tr cells) in mesenteric lymph nodes (MLNs). Here we show that the inhibition of cyclooxygenase-2 (COX-2) in vivo suppressed oral tolerance and was associated with enhanced differentiation of interleukin (IL)-4-producing T cells and reduced Foxp3+ Tr-cell differentiation in MLN. As a result, the functional suppressive capacity of these differentiated mucosal T cells was lost. IL-4 was causally related to loss of tolerance as treatment of mice with anti-IL-4 antibodies during COX-2 inhibition restored tolerance. Dendritic cells (DCs) in the MLN differentially expressed COX-2 and reductionist experiments revealed that selective inhibition of the enzyme in these cells inhibited Foxp3+ Tr-cell differentiation in vitro. Importantly, the inhibition of COX-2 in MLN-DC caused increased GATA-3 expression and enhanced IL-4 release by T cells, which was directly related to impaired Tr-cell differentiation. These data provide crucial insights into the mechanisms driving de novo Tr-cell induction and tolerance in the intestine.

Collaboration


Dive into the Femke Broere's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge