Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Feng-Gong Lü is active.

Publication


Featured researches published by Feng-Gong Lü.


Journal of Insect Physiology | 2014

RNAi suppression of the ryanodine receptor gene results in decreased susceptibility to chlorantraniliprole in Colorado potato beetle Leptinotarsa decemlineata.

Pin-Jun Wan; Wei-Yan Guo; Yao Yang; Feng-Gong Lü; Wei-Ping Lu; Guo-Qing Li

Leptinotarsadecemlineata is the most important pest in potato and causes serious yield loss each year. Chlorantraniliprole acts on insect ryanodine receptors (RyRs) and is among the most active compounds against L. decemlineata. Here we cloned and characterized a 15,792-bp full-length LdRyR cDNA that encoded a 5128-amino acid protein. LdRyR shares 85-92% amino acid similarities with other insect RyR homologues, and 59-61% similarities with those from Caenorhabditis elegans and Homo sapiens. All hallmarks of the RyR proteins are conserved in LdRyR. LdRyR has a MIR domain, two RIH domains, three SPRY domains, four copies of RyR domain and a RIH-associated domain in the N-terminus, and it possesses two consensus calcium ion-binding EF-hand motifs and six predicted transmembrane helices in the C-terminus. Temporal, spatial and tissue-specific expression patterns of LdRyR were evaluated. LdRyR expression level was increased constantly from egg to wandering stages, dropped in pupal stage and was increased again in the adult stage. It was widely expressed in the head, thorax and abdomen of day 3 fourth-instar larvae. Moreover, it was ubiquitously expressed in all inspected tissues including epidermis, foregut, midgut, ileum, rectum, fat body, ventral ganglia and Malpighian tubules in day 3 fourth-instar larvae. Dietary introduction of double-stranded RNA of LdRyR significantly reduced the mRNA levels of the target gene in the larvae and adults, respectively, and significantly decreased chlorantraniliprole-induced mortalities. Thus, our results suggested that LdRyR encoded a functional ryanodine receptor in L. decemlineata.


Insect Biochemistry and Molecular Biology | 2014

Involvement of FTZ-F1 in the regulation of pupation in Leptinotarsa decemlineata (Say).

Xin-Ping Liu; Kai-Yun Fu; Feng-Gong Lü; Qing-Wei Meng; Wen-Chao Guo; Guo-Qing Li

During the final instar larvae of holometabolous insects, a pulse of 20-hydroxyecdysone (20E) and a drop in juvenile hormone (JH) trigger larval-pupal metamorphosis. In this study, two LdFTZ-F1 cDNAs (LdFTZ-F1-1 and LdFTZ-F1-2) were cloned in Leptinotarsa decemlineata. Both LdFTZ-F1-1 and LdFTZ-F1-2 were highly expressed just before or right after each molt, similar to the expression pattern of an ecdysteroidogenesis gene LdSHD. Ingestion of an ecdysteroid agonist halofenozide (Hal) enhanced LdFTZ-F1-1 and LdFTZ-F1-2 expression in the final larval instar. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against LdSHD repressed the expression. Moreover, Hal rescued the expression levels in LdSHD-silenced larvae. Thus, 20E peaks seem to induce the transcription of LdFTZ-F1s. Furthermore, ingesting dsLdFTZ-F1 from a common fragment of LdFTZ-F1-1 and LdFTZ-F1-2 successfully knocked down both LdFTZ-F1s, and impaired pupation. Finally, knocking down LdFTZ-F1s significantly repressed the transcription of three ecdysteroidogenesis genes, lowered 20E titer, and reduced the expression of two 20E receptor genes. Silencing LdFTZ-F1s also induced the expression of a JH biosynthesis gene, increased JH titer, but decreased the mRNA level of a JH early-inducible gene. Thus, LdFTZ-F1s are involved in the regulation of pupation by modulating 20E and JH titers and mediating their signaling pathways.


Insect Biochemistry and Molecular Biology | 2015

Functions of nuclear receptor HR3 during larval-pupal molting in Leptinotarsa decemlineata (Say) revealed by in vivo RNA interference

Wen-Chao Guo; Xin-Ping Liu; Kai-Yun Fu; Ji-Feng Shi; Feng-Gong Lü; Guo-Qing Li

Our previous results revealed that RNA interference-aided knockdown of Leptinotarsa decemlineata FTZ-F1 (LdFTZ-F1) reduced 20E titer, and impaired pupation. In this study, we characterized a putative LdHR3 gene, an early-late 20E-response gene upstream of LdFTZ-F1. Within the first, second and third larval instars, three expression peaks of LdHR3 occurred just before the molt. In the fourth (final) larval instar 80 h after ecdysis and prepupal stage 3 days after burying into soil, two LdHR3 peaks occurred. The LdHR3 expression peaks coincide with the peaks of circulating 20E level. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdHR3 expression in the final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene Ldshd repressed the expression. Moreover, Hal rescued the transcript levels in the Ldshd-silenced larvae. Thus, 20E peaks activate the expression of LdHR3. Furthermore, ingesting dsRNA against LdHR3 successfully knocked down the target gene, and impaired pupation. Finally, knockdown of LdHR3 upregulated the transcription of three ecdysteroidogenesis genes (Ldphm, Lddib and Ldshd), increased 20E titer, and activated the expression of two 20E-response genes (LdEcR and LdFTZ-F1). Thus, LdHR3 functions in regulation of pupation in the Colorado potato beetle.


Pest Management Science | 2016

Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults

Kai-Yun Fu; Qian Li; Li-Tao Zhou; Qing-Wei Meng; Feng-Gong Lü; Wen-Chao Guo; Guo-Qing Li

BACKGROUND Juvenile hormone (JH) plays a critical role in the regulation of metamorphosis in Leptinotarsa decemlineata, a notorious defoliator of potato. JH acid methyltransferase (JHAMT) is involved in one of the final steps of JH biosynthesis. RESULTS A putative JHAMT cDNA (LdJHAMT) was cloned. Two double-stranded RNAs (dsRNAs) (dsJHAMT1 and dsJHAMT2) against LdJHAMT were constructed and bacterially expressed. Experiments were conducted to investigate the effectiveness of RNAi in both second- and fourth-instar larvae. Dietary introduction of dsJHAMT1 and dsJHAMT2 successfully knocked down the target gene, lowered JH titre in the haemolymph and reduced the transcript of Krüppel homologue 1 gene. Ingestion of dsJHAMT caused larval death and weight loss, shortened larval developmental period and impaired pupation. Moreover, the dsJHAMT-fed pupae exhibited lower adult emergence rates. The resulting adults weighed an average of 50 mg less than the control group, and the females did not deposit eggs. Application of pyriproxyfen to the dsJHAMT-fed insects rescued all the negative effects. CONCLUSIONS LdJHAMT expresses functional JHAMT enzyme. The RNAi targeting LdJHAMT could be used for control of L. decemlineata.


Insect Molecular Biology | 2016

Nuclear receptor ecdysone-induced protein 75 is required for larval–pupal metamorphosis in the Colorado potato beetle Leptinotarsa decemlineata (Say)

Wen-Chao Guo; Xin-Ping Liu; Kai-Yun Fu; Ji-Feng Shi; Feng-Gong Lü; Guo-Qing Li

20‐hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development. In this study, three Leptinotarsa decemlineata Ecdysone‐induced protein 75 (LdE75) cDNAs (LdE75A, B and C) were cloned from L. decemlineata. The three LdE75 isoforms were highly expressed just before or right after each moult. Within the fourth larval instar, they showed a small rise and a big peak 40 and 80 h after ecdysis. The expression peaks of the three LdE75s coincided with the peaks of circulating 20E levels. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdE75 expression in the day 1 final larval instars. Conversely, a decrease in 20E by feeding a double‐stranded RNA (dsRNA) against an ecdysteroidogenesis gene, Shade (LdSHD), repressed the expression of LdE75. Moreover, Hal upregulated the expression of the three LdE75s in LdSHD‐silenced larvae. Thus, 20E pulses activate the transcription of LdE75s. Furthermore, ingesting dsE75‐1 and dsE75‐2 from a common fragment of the three isoforms successfully knocked down these LdE75s, and caused developmental arrest. Finally, knocking down LdE75s significantly repressed the transcription of three ecdysteroidogenesis genes, lowered the 20E titre and affected the expression of two 20E‐response genes. Silencing LdE75s also induced the expression of a JH biosynthesis gene, increased JH titre and activated the transcription of a JH early‐inducible gene. Thus, Ld E75s are required for larval–pupal metamorphosis and act mainly by modulating 20E and JH titres and mediating their signalling pathways.


Gene | 2015

Characterization of two juvenile hormone epoxide hydrolases by RNA interference in the Colorado potato beetle

Feng-Gong Lü; Kai-Yun Fu; Wen-Chao Guo; Guo-Qing Li

In insect, juvenile hormone (JH) titers are tightly regulated in different development stages through synthesis and degradation pathways. During JH degradation, JH epoxide hydrolase (JHEH) converts JH to JH diol, and hydrolyses JH acid to JH acid diol. In this study, two full length LdJHEH cDNAs were cloned from Leptinotarsa decemlineata, and were provisionally designated LdJHEH1 and LdJHEH2. Both mRNAs were detectable in the thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, hindgut, ventral ganglia, Malpighian tubules, fat bodies, epidermis, and hemocytes of the day 2 fourth-instar larvae, and in female ovaries as well as male reproductive organs of the adults. Moreover, both LdJHEH1 and LdJHEH2 were expressed throughout all larval life, with the highest peaks occurring 32h after ecdysis of the final (fourth) instar larvae. Four double-stranded RNAs (dsRNAs) (dsJHEH1-1, dsJHEH1-2, dsJHEH2-1, dsJHEH2-2) respectively targeting LdJHEH1 and LdJHEH2 were constructed and bacterially expressed. Ingestion of dsJHEH1-1, dsJHEH1-2, dsJHEH2-1, dsJHEH2-2, and a mixture of dsJHEH1-1+dsJHEH2-1 successfully knocked down corresponding target gene function, and significantly increased JH titer and upregulated Krüppel homolog 1 (LdKr-h1) mRNA level. Knockdown of either LdJHEH1 or LdJHEH2, or both genes slightly reduced larval weight and delayed larval development, and significantly impaired adult emergence. Therefore, it is suggested that knockdown LdJHEH1 and LdJHEH2 affected JH degradation in the Colorado potato beetle.


Pesticide Biochemistry and Physiology | 2015

Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin.

Feng-Gong Lü; Kai-Yun Fu; Qian Li; Wen-Chao Guo; Tursun Ahmat; Guo-Qing Li

Based on the Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, 70 novel carboxylesterases and 2 acetylcholinesterases were found. The 72 members belong to a multifunctional carboxylesterase/cholinesterase superfamily (CCE). A phylogenetic tree including the 72 LdCCEs and the CCEs from Tribolium castaneum, Drosophila melanogaster and Apis mellifera revealed that all CCEs fell into three main phylogenetic groups: dietary/detoxification, hormone/semiochemical processing, and neurodevelopmental classes. Numbers of L. decemlineata CCEs in the three classes were 52, 12 and 8, respectively. The dietary/detoxification class includes two clades: coleopteran xenobiotic metabolizing and α-esterase type CCEs. CCEs in the two clades have independently expanded in L. decemlineata. The hormone/semiochemical processing class has three clades: integument CCEs, β- and pheromone CCEs and juvenile hormone CCEs. Integument CCEs in L. decemlineata have also expanded. The neurodevelopmental CCEs are implicated the most ancient class, containing acetylcholinesterase, neuroligin, neurotactin, glutactin, gliotactin and others. Among the 70 novel CCE genes, KM220566, KM220530, KM220576, KM220527 and KM220541 were fipronil-inducible, and KM220578, KM220566, KM220542, KM220564, KM220561, KM220554, KM220527, KM220538 and KM220541 were cyhalothrin-inducible. They were the candidates involving in insecticide detoxification. Moreover, our results also provided a platform to understand the functions and evolution of L. decemlineata CCE genes.


Pest Management Science | 2015

Knocking down a putative Δ1-pyrroline-5-carboxylate dehydrogenase gene by RNA interference inhibits flight and causes adult lethality in the Colorado potato beetle Leptinotarsa decemlineata (Say)

Pin-Jun Wan; Kai-Yun Fu; Feng-Gong Lü; Xin-Xin Wang; Wen-Chao Guo; Guo-Qing Li

BACKGROUND Leptinotarsa decemlineata is an able disperser by flight. Novel control strategies must be explored to control the damage and inhibit the dispersal efficiently. Proline is a major energy substrate during flight. Δ-Pyrroline-5-carboxylate dehydrogenase (P5CDh) catalyses the second step of proline degradation for the production of ATP. RESULTS A full-length Ldp5cdh cDNA was cloned. Ldp5cdh was ubiquitously expressed in the eggs, the first through fourth larval instars, wandering larvae, pupae and adults. In the adults, Ldp5cdh mRNA was widely distributed in thorax muscles, midgut, foregut, hindgut, Malpighian tubules, ventral ganglion, fat body and epidermis, with the expression levels from the highest to the lowest. Two double-stranded RNAs (dsRNAs) (dsLdp5cdh1 and dsLdp5cdh2) targeting Ldp5cdh were constructed and bacterially expressed. Ingestion of dsLdp5cdh1 and dsLdp5cdh2 successfully silenced Ldp5cdh, significantly increased the contents of proline, arginine and alanine, but strongly decreased the contents of asparate, asparagine, glutamate and glutamine in the haemolymph. Moreover, knocking down Ldp5cdh significantly reduced ATP content, decreased flight speed, shortened flight distance and increased adult mortality. CONCLUSIONS It seems that identified Ldp5cdh encodes a functional P5CDh enzyme, and Ldp5cdh may serve as a potential target for dsRNA-based pesticide for controlling the damage and dispersal of L. decemlineata adults.


Gene | 2016

Identification of ten mevalonate enzyme-encoding genes and their expression in response to juvenile hormone levels in Leptinotarsa decemlineata (Say)

Qian Li; Qing-Wei Meng; Feng-Gong Lü; Wen-Chao Guo; Guo-Qing Li

The mevalonate pathway is responsible for the biosynthesis of many essential molecules important in insect development, reproduction, chemical communication and defense. Based on Leptinotarsa decemlineata transcriptome and genome data, we identified ten genes that encoded acetoacetyl-CoA thiolase (LdAACT1 and LdAACT2), hydroxymethylglutaryl (HMA)-CoA synthase (LdHMGS), HMG-CoA reductase (LdHMGR1 and LdHMGR2), mevalonate kinase (LdMevK), phospho-mevalonate kinase (LdPMK), mevalonate diphosphate decarboxylase (LdMDD), isopentenyl-diphosphate isomerase (LdIDI) and farnesyl pyrophosphate synthetase (LdFPPS). Nine of these genes (except for LdAACT1) were mainly expressed in the larval brain-corpora cardiaca-corpora allata complex, and adult ovary and testis. The 9 genes were transcribed at high levels right after each ecdysis, and at low levels in the mid instar. Therefore, the 9 genes were indicated to be involved in JH biosynthesis. Moreover, knockdown of a JH biosynthesis gene LdJHAMT to lower JH titer significantly downregulated the transcription of the 9 genes. Ingestion of JH to activate JH signaling also significantly suppressed the expression of the 9 genes. It appears that the accumulation of JH precursors in LdJHAMT RNAi larvae and a high JH titer in JH-fed specimens may cause negative feedbacks to repress the expression of the 9 mevalonate enzyme-encoding genes (excluding LdAACT1) to balance the enzyme quantity in L. decemlineata.


Archives of Insect Biochemistry and Physiology | 2015

CHARACTERIZATION AND FUNCTIONAL STUDY OF A PUTATIVE JUVENILE HORMONE DIOL KINASE IN THE COLORADO POTATO BEETLE Leptinotarsa decemlineata (Say)

Kai-Yun Fu; Feng-Gong Lü; Wen-Chao Guo; Guo-Qing Li

Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH degradation. In the present article, a putative JHDK cDNA (LdJHDK) was cloned from the Colorado potato beetle Leptinotarsa decemlineata. The cDNA consists of 814 bp, containing a 555 bp open reading frame encoding a 184 amino acid protein. LdJHDK reveals a high degree of identity to the previously reported insect JHDKs. It possesses three conserved purine nucleotide-binding elements, and contains three EF-hand motifs (helix-loop-helix structural domains). LdJHDK mRNA was mainly detected in hindgut and Malpighian tubules. Besides, a trace amount of LdJHDK mRNA was also found in thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, ventral ganglia, fat body, epidermis, and hemocytes. Moreover, LdJHDK was expressed throughout all developmental stages. Within the first, second, and third larval instar, the expression levels of LdJHDK were higher just before and right after the molt, and were lower in the intermediate instar. In the fourth larval instar, the highest peak of LdJHDK occurred 56 h after ecdysis. Ingestion of double-stranded RNA (dsRNA) against LdJHDK successfully knocked down the target gene, increased JH titer, and significantly upregulated LdKr-h1 mRNA level. Knockdown of LdJHDK significantly impaired adult emergence. Thus, we provide a line of experimental evidence in L. decemlineata to support that LdJHDK encodes function protein involved in JH degradation.

Collaboration


Dive into the Feng-Gong Lü's collaboration.

Top Co-Authors

Avatar

Guo-Qing Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kai-Yun Fu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wen-Chao Guo

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qing-Wei Meng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xin-Ping Liu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qian Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Pin-Jun Wan

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ji-Feng Shi

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Pin-Jun Wan

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li-Tao Zhou

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge