Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Feng Tie is active.

Publication


Featured researches published by Feng Tie.


Development | 2009

CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing

Feng Tie; Rakhee Banerjee; Carl A. Stratton; Jayashree Prasad-Sinha; Vincent Stepanik; Andrei Zlobin; Manuel O. Diaz; Peter C. Scacheri; Peter J. Harte

Trimethylation of histone H3 lysine 27 (H3K27me3) by Polycomb repressive complex 2 (PRC2) is essential for transcriptional silencing of Polycomb target genes, whereas acetylation of H3K27 (H3K27ac) has recently been shown to be associated with many active mammalian genes. The Trithorax protein (TRX), which associates with the histone acetyltransferase CBP, is required for maintenance of transcriptionally active states and antagonizes Polycomb silencing, although the mechanism underlying this antagonism is unknown. Here we show that H3K27 is specifically acetylated by Drosophila CBP and its deacetylation involves RPD3. H3K27ac is present at high levels in early embryos and declines after 4 hours as H3K27me3 increases. Knockdown of E(Z) decreases H3K27me3 and increases H3K27ac in bulk histones and at the promoter of the repressed Polycomb target gene abd-A, suggesting that these indeed constitute alternative modifications at some H3K27 sites. Moderate overexpression of CBP in vivo causes a global increase in H3K27ac and a decrease in H3K27me3, and strongly enhances Polycomb mutant phenotypes. We also show that TRX is required for H3K27 acetylation. TRX overexpression also causes an increase in H3K27ac and a concomitant decrease in H3K27me3 and leads to defects in Polycomb silencing. Chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) analysis reveals that H3K27ac and H3K27me3 are mutually exclusive and that H3K27ac and H3K4me3 signals coincide at most sites. We propose that TRX-dependent acetylation of H3K27 by CBP prevents H3K27me3 at Polycomb target genes and constitutes a key part of the molecular mechanism by which TRX antagonizes or prevents Polycomb silencing.


Molecular and Cellular Biology | 2003

A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3.

Feng Tie; Jayashree Prasad-Sinha; Anna Birve; Åsa Rasmuson-Lestander; Peter J. Harte

ABSTRACT Polycomb group (PcG) proteins are required to maintain stable repression of the homeotic genes and others throughout development. The PcG proteins ESC and E(Z) are present in a prominent 600-kDa complex as well as in a number of higher-molecular-mass complexes. Here we identify and characterize a 1-MDa ESC/E(Z) complex that is distinguished from the 600-kDa complex by the presence of the PcG protein Polycomblike (PCL) and the histone deacetylase RPD3. In addition, the 1-MDa complex shares with the 600-kDa complex the histone binding protein p55 and the PcG protein SU(Z)12. Coimmunoprecipitation assays performed on embryo extracts and gel filtration column fractions indicate that, during embryogenesis E(Z), SU(Z)12, and p55 are present in all ESC complexes, while PCL and RPD3 are associated with ESC, E(Z), SU(Z)12, and p55 only in the 1-MDa complex. Glutathione transferase pulldown assays demonstrate that RPD3 binds directly to PCL via the conserved PHD fingers of PCL and the N terminus of RPD3. PCL and E(Z) colocalize virtually completely on polytene chromosomes and are associated with a subset of RPD3 sites. As previously shown for E(Z) and RPD3, PCL and SU(Z)12 are also recruited to the insertion site of a minimal Ubx Polycomb response element transgene in vivo. Consistent with these biochemical and cytological results, Rpd3 mutations enhance the phenotypes of Pcl mutants, further indicating that RPD3 is required for PcG silencing and possibly for PCL function. These results suggest that there may be multiple ESC/E(Z) complexes with distinct functions in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance

Alex P. Siebold; Rakhee Banerjee; Feng Tie; Daniel L. Kiss; Jacob Moskowitz; Peter J. Harte

Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are key epigenetic regulators of global transcription programs. Their antagonistic chromatin-modifying activities modulate the expression of many genes and affect many biological processes. Here we report that heterozygous mutations in two core subunits of Polycomb Repressive Complex 2 (PRC2), the histone H3 lysine 27 (H3K27)-specific methyltransferase E(Z) and its partner, the H3 binding protein ESC, increase longevity and reduce adult levels of trimethylated H3K27 (H3K27me3). Mutations in trithorax (trx), a well known antagonist of Polycomb silencing, elevate the H3K27me3 level of E(z) mutants and suppress their increased longevity. Like many long-lived mutants, E(z) and esc mutants exhibit increased resistance to oxidative stress and starvation, and these phenotypes are also suppressed by trx mutations. This suppression strongly suggests that both the longevity and stress resistance phenotypes of PRC2 mutants are specifically due to their reduced levels of H3K27me3 and the consequent perturbation of Polycomb silencing. Consistent with this, long-lived E(z) mutants exhibit derepression of Abd-B, a well-characterized direct target of Polycomb silencing, and Odc1, a putative direct target implicated in stress resistance. These findings establish a role for PRC2 and TRX in the modulation of organismal longevity and stress resistance and indicate that moderate perturbation of Polycomb silencing can increase longevity.


Molecular and Cellular Biology | 2012

Histone Demethylase UTX and Chromatin Remodeler BRM Bind Directly to CBP and Modulate Acetylation of Histone H3 Lysine 27

Feng Tie; Rakhee Banerjee; Patricia A. Conrad; Peter C. Scacheri; Peter J. Harte

ABSTRACT Trithorax group (TrxG) proteins antagonize Polycomb silencing and are required for maintenance of transcriptionally active states. We previously showed that the Drosophila melanogaster acetyltransferase CREB-binding protein (CBP) acetylates histone H3 lysine 27 (H3K27ac), thereby directly blocking its trimethylation (H3K27me3) by Polycomb repressive complex 2 (PRC2) in Polycomb target genes. Here, we show that H3K27ac levels also depend on other TrxG proteins, including the histone H3K27-specific demethylase UTX and the chromatin-remodeling ATPase Brahma (BRM). We show that UTX and BRM are physically associated with CBP in vivo and that UTX, BRM, and CBP colocalize genome-wide on Polycomb response elements (PREs) and on many active Polycomb target genes marked by H3K27ac. UTX and BRM bind directly to conserved zinc fingers of CBP, suggesting that their individual activities are functionally coupled in vivo. The bromodomain-containing C terminus of BRM binds to the CBP PHD finger, enhances PHD binding to histone H3, and enhances in vitro acetylation of H3K27 by recombinant CBP. brm mutations and knockdown of UTX by RNA interference (RNAi) reduce H3K27ac levels and increase H3K27me3 levels. We propose that direct binding of UTX and BRM to CBP and their modulation of H3K27ac play an important role in antagonizing Polycomb silencing.


Molecular and Cellular Biology | 2007

The N Terminus of Drosophila ESC Binds Directly to Histone H3 and Is Required for E(Z)-Dependent Trimethylation of H3 Lysine 27

Feng Tie; Carl A. Stratton; Rebeccah L. Kurzhals; Peter J. Harte

ABSTRACT Polycomb group proteins mediate heritable transcriptional silencing and function through multiprotein complexes that methylate and ubiquitinate histones. The 600-kDa E(Z)/ESC complex, also known as Polycomb repressive complex 2 (PRC2), specifically methylates histone H3 lysine 27 (H3 K27) through the intrinsic histone methyltransferase (HMTase) activity of the E(Z) SET domain. By itself, E(Z) exhibits no detectable HMTase activity and requires ESC for methylation of H3 K27. The molecular basis for this requirement is unknown. ESC binds directly, via its C-terminal WD repeats (β-propeller domain), to E(Z). Here, we show that the N-terminal region of ESC that precedes its β-propeller domain interacts directly with histone H3, thereby physically linking E(Z) to its substrate. We show that when expressed in stable S2 cell lines, an N-terminally truncated ESC (FLAG-ESC61-425), like full-length ESC, is incorporated into complexes with E(Z) and binds to a Ubx Polycomb response element in a chromatin immunoprecipitation assay. However, incorporation of this N-terminally truncated ESC into E(Z) complexes prevents trimethylation of histone H3 by E(Z). We also show that a closely related Drosophila melanogaster paralog of ESC, ESC-like (ESCL), and the mammalian homolog of ESC, EED, also interact with histone H3 via their N termini, indicating that the interaction of ESC with histone H3 is evolutionarily conserved, reflecting its functional importance. Our data suggest that one of the roles of ESC (and ESCL and EED) in PRC2 complexes is to enable E(Z) to utilize histone H3 as a substrate by physically linking enzyme and substrate.


Development | 2014

Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing

Feng Tie; Rakhee Banerjee; Alina Saiakhova; Benny Howard; Kelsey E. Monteith; Peter C. Scacheri; Michael S. Cosgrove; Peter J. Harte

Trithorax (TRX) antagonizes epigenetic silencing by Polycomb group (PcG) proteins, stimulates enhancer-dependent transcription, and establishes a ‘cellular memory’ of active transcription of PcG-regulated genes. The mechanisms underlying these TRX functions remain largely unknown, but are presumed to involve its histone H3K4 methyltransferase activity. We report that the SET domains of TRX and TRX-related (TRR) have robust histone H3K4 monomethyltransferase activity in vitro and that Tyr3701 of TRX and Tyr2404 of TRR prevent them from being trimethyltransferases. The trxZ11 missense mutation (G3601S), which abolishes H3K4 methyltransferase activity in vitro, reduces the H3K4me1 but not the H3K4me3 level in vivo. trxZ11 also suppresses the impaired silencing phenotypes of the Pc3 mutant, suggesting that H3K4me1 is involved in antagonizing Polycomb silencing. Polycomb silencing is also antagonized by TRX-dependent H3K27 acetylation by CREB-binding protein (CBP). We show that perturbation of Polycomb silencing by TRX overexpression requires CBP. We also show that TRX and TRR are each physically associated with CBP in vivo, that TRX binds directly to the CBP KIX domain, and that the chromatin binding patterns of TRX and TRR are highly correlated with CBP and H3K4me1 genome-wide. In vitro acetylation of H3K27 by CBP is enhanced on K4me1-containing H3 substrates, and independently altering the H3K4me1 level in vivo, via the H3K4 demethylase LSD1, produces concordant changes in H3K27ac. These data indicate that the catalytic activities of TRX and CBP are physically coupled and suggest that both activities play roles in antagonizing Polycomb silencing, stimulating enhancer activity and cellular memory.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Polycomb inhibits histone acetylation by CBP by binding directly to its catalytic domain.

Feng Tie; Rakhee Banerjee; Chen Fu; Carl A. Stratton; Ming Fang; Peter J. Harte

Significance The Polycomb protein (PC) is well known for its role in transcriptional silencing and binding to trimethylated histone H3 Lys27 (H3K27me3). We report here that PC inhibits the histone acetyltransferase (HAT) activity of CREB-binding protein (CBP). PC interacts directly with the CBP HAT domain, binding to its autoregulatory loop, whose autoacetylation greatly enhances enzyme activity. PC binding inhibits histone H3 acetylation. Interestingly, CBP autoacetylation impairs PC binding in vitro, and PC is preferentially associated with unacetylated CBP in vivo. Altering PC levels in vivo alters the acetylated H3K27 (H3K27ac) level in a predictable manner. PC inhibition of CBP HAT activity at enhancers and promoters with paused RNA polymerase II may affect regulation of both repressed and active genes. Drosophila Polycomb (PC), a subunit of Polycomb repressive complex 1 (PRC1), is well known for its role in maintaining repression of the homeotic genes and many others and for its binding to trimethylated histone H3 on Lys 27 (H3K27me3) via its chromodomain. Here, we identify a novel activity of PC: inhibition of the histone acetylation activity of CREB-binding protein (CBP). We show that PC and its mammalian CBX orthologs interact directly with the histone acetyltransferase (HAT) domain of CBP, binding to the previously identified autoregulatory loop, whose autoacetylation greatly enhances HAT activity. We identify a conserved PC motif adjacent to the chromodomain required for CBP binding and show that PC binding inhibits acetylation of histone H3. CBP autoacetylation impairs PC binding in vitro, and PC is preferentially associated with unacetylated CBP in vivo. PC knockdown elevates the acetylated H3K27 (H3K27ac) level globally and at promoter regions of some genes that are bound by both PC and CBP. Conversely, PC overexpression decreases the H3K27ac level in vivo and also suppresses CBP-dependent Polycomb phenotypes caused by overexpression of Trithorax, an antagonist of Polycomb silencing. We find that PC is physically associated with the initiating form of RNA polymerase II (Pol II) and that many promoters co-occupied by PC and CBP are associated with paused Pol II, suggesting that PC may play a role in Pol II pausing. These results suggest that PC/PRC1 inhibition of CBP HAT activity plays a role in regulating transcription of both repressed and active PC-regulated genes.


Molecular and Cellular Biology | 2011

A Barrier-Only Boundary Element Delimits the Formation of Facultative Heterochromatin in Drosophila melanogaster and Vertebrates

Nianwei Lin; Xingguo Li; Kairong Cui; Iouri Chepelev; Feng Tie; Bo Liu; Guangyao Li; Peter J. Harte; Keji Zhao; Suming Huang; Lei Zhou

ABSTRACT Formation of facultative heterochromatin at specific genomic loci is fundamentally important in defining cellular properties such as differentiation potential and responsiveness to developmental, physiological, and environmental stimuli. By the nature of their formation, heterochromatin and repressive histone marks propagate until the chain reaction is broken. While certain active promoters can block propagation of heterochromatin, there are also specialized DNA elements, referred to as chromatin barriers, that serve to demarcate the boundary of facultative heterochromatin formation. In this study, we identified a chromatin barrier that specifically limits the formation of repressive chromatin to a distal enhancer region so that repressive histone modifications cannot reach the promoter and promoter-proximal enhancer regions of reaper. Unlike all of the known boundary elements identified for Drosophila melanogaster, this IRER (irradiation-responsive enhancer region) left barrier (ILB) does not exhibit enhancer-blocking activity. Not only has the ILB been conserved in different Drosophila species, it can also function as an effective chromatin barrier in vertebrate cells. This suggests that the mechanism by which it functions to spatially restrict the formation of repressive chromatin marked by trimethylated H3K27 has also been conserved widely during evolution.


Genesis | 2000

Mouse homolog of the Drosophila Pc-G gene esc exerts a dominant negative effect in Drosophila

Jianbo Wang; Feng Tie; Esther Jane; Armin Schumacher; Peter J. Harte; Terry Magnuson

Summary: The Polycomb group genes are involved in maintaining long term transcriptional repression of the homeotic genes in both Drosophila and mammals. The mouse eed locus encodes the highly conserved ortholog of the Drosophila ESC protein. To test the functional conservation between the two genes, eed was introduced into the fly to determine whether it could rescue the esc mutant phenotype. eed exerted a dominant negative effect on the leg transformation phenotype associated with the esc mutation. This result is interpreted in light of in vitro protein‐protein binding data and in vivo polytene chromosome staining indicating the lack of significant interaction between Eed and fly E(Z), a molecular partner of ESC. genesis 26:67–76, 2000


Developmental Cell | 2016

Stuxnet Facilitates the Degradation of Polycomb Protein during Development

Juan Du; Junzheng Zhang; Tao He; Yajuan Li; Ying Su; Feng Tie; Min Liu; Peter J. Harte; Alan Jian Zhu

Polycomb-group (PcG) proteins function to ensure correct deployment of developmental programs by epigenetically repressing target gene expression. Despite the importance, few studies have been focused on the regulation of PcG activity itself. Here, we report a Drosophila gene, stuxnet (stx), that controls Pc protein stability. We find that heightened stx activity leads to homeotic transformation, reduced Pc activity, and de-repression of PcG targets. Conversely, stx mutants, which can be rescued by decreased Pc expression, display developmental defects resembling hyperactivation of Pc. Our biochemical analyses provide a mechanistic basis for the interaction between stx and Pc; Stx facilitates Pc degradation in the proteasome, independent of ubiquitin modification. Furthermore, this mode of regulation is conserved in vertebrates. Mouse stx promotes degradation of Cbx4, an orthologous Pc protein, in vertebrate cells and induces homeotic transformation in Drosophila. Our results highlight an evolutionarily conserved mechanism of regulated protein degradation on PcG homeostasis and epigenetic activity.

Collaboration


Dive into the Feng Tie's collaboration.

Top Co-Authors

Avatar

Peter J. Harte

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Rakhee Banerjee

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Carl A. Stratton

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Esther Jane

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jayashree Prasad-Sinha

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Peter C. Scacheri

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Takehito Furuyama

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Alex P. Siebold

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Armin Schumacher

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jianbo Wang

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge