Feng-Yu Liu
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Feng-Yu Liu.
Experimental Neurology | 2009
Xiao-Xiu Qu; Jie Cai; Ming-jia Li; Ye-Nan Chi; Fei-Fei Liao; Feng-Yu Liu; You Wan; Ji-Sheng Han; Guo-Gang Xing
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain. Our study showed that intrathecal (i.t.) injection of Ro 25-6981, a selective NMDA-2B receptor antagonist, had a dose-dependent anti-allodynic effect without causing motor dysfunction. Furthermore, i.t. application of another NMDA-2B receptor antagonist ifenprodil prior to SNL also significantly inhibited the mechanical allodynia but not the thermal hyperalgesia. These data suggest that NMDA-2B receptors at the spinal cord level play an important role in the development of neuropathic pain, especially at the early stage following nerve injury. In addition, spinal administration of Ro 25-6981 not only had a dose-dependent inhibitory effect on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in both normal and SNL rats, but also significantly inhibited the long-term potentiation (LTP) in the C-fiber responses of WDR neurons induced by high-frequency stimulation (HFS) applied to the sciatic nerve. These results indicate that activation of the dorsal horn NMDA-2B receptors may be crucial for the spinal nociceptive synaptic transmission and for the development of long-lasting spinal hyperexcitability following nerve injury. In conclusion, the spinal cord NMDA-2B receptors play a role in the development of central sensitization and neuropathic pain via the induction of LTP in dorsal horn nociceptive synaptic transmission. Therefore, the spinal cord NMDA-2B receptor is likely to be a target for clinical pain therapy.
Molecular Pain | 2008
Lu Yu; Fei Yang; Hao Luo; Feng-Yu Liu; Ji-Sheng Han; Guo-Gang Xing; You Wan
BackgroundThe present study aims to investigate the role of transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion (DRG) neurons in chronic pain including thermal hyperalgesia and mechanical allodynia. Chronic inflammatory nociception of rats was produced by intraplantar injection of complete Freunds adjuvant (CFA) and data was collected until day 28 following injection.ResultsThermal hyperalgesia was evident from day 1 to day 28 with peak at day 7, while mechanical allodynia persisted from day 1 to day 14 and was greatest at day 7. Intrathecal administration of AMG 9810 at day 7, a selective TRPV1 antagonist, significantly reduced thermal hyperalgesia and mechanical allodynia. TRPV1 expression in DRG detected by Western blotting was increased relative to baseline throughout the observation period. Double labeling of TRPV1 with neuronal marker neurofilament 200 (NF200), calcitonin gene-related peptide (CGRP) or isolectin B4 (IB4) was used to distinguish different subtypes of DRG neurons. TRPV1 expression was increased in the medium-sized myelinated A fiber (NF200 positive) neurons and in small non-peptidergic (IB4 positive) neurons from day 1 to day 14 and was increased in small peptidergic (CGRP positive) neurons from day 1 to day 28.ConclusionTRPV1 expression increases in all three types of DRG neurons after CFA injection and plays a role in CFA-induced chronic inflammatory pain including thermal hyperalgesia and mechanical allodynia.
Experimental Neurology | 2007
Guo-Gang Xing; Feng-Yu Liu; Xiao-Xiu Qu; Ji-Sheng Han; You Wan
Our previous study has reported that electroacupuncture (EA) at low frequency of 2 Hz had greater and more prolonged analgesic effects on mechanical allodynia and thermal hyperalgesia than that EA at high frequency of 100 Hz in rats with neuropathic pain. However, how EA at different frequencies produces distinct analgesic effects on neuropathic pain is unclear. Neuronal plastic changes in spinal cord might contribute to the development and maintenance of neuropathic pain. In the present study, we investigated changes of spinal synaptic plasticity in the development of neuropathic pain and its modulation by EA in rats with neuropathic pain. Field potentials of spinal dorsal horn neurons were recorded extracellularly in sham-operated rats and in rats with spinal nerve ligation (SNL). We found for the first time that the threshold for inducing long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn was significantly lower in SNL rats than that in sham-operated rats. The threshold for evoking the C-fiber-evoked field potentials was also significantly lower, and the amplitude of the field potentials was higher in SNL rats as compared with those in the control rats. EA at low frequency of 2 Hz applied on acupoints ST 36 and SP 6, which was effective in treatment of neuropathic pain, induced long-term depression (LTD) of the C-fiber-evoked potentials in SNL rats. This effect could be blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 and by opioid receptor antagonist naloxone. In contrast, EA at high frequency of 100 Hz, which was not effective in treatment of neuropathic pain, induced LTP in SNL rats but LTD in sham-operated rats. Unlike the 2 Hz EA-induced LTD in SNL rats, the 100 Hz EA-induced LTD in sham-operated rats was dependent on the endogenous GABAergic and serotonergic inhibitory system. Results from our present study suggest that (1) hyperexcitability in the spinal nociceptive synaptic transmission may occur after nerve injury, which may contribute to the development of neuropathic pain; (2) EA at low or high frequency has a different effect on modulating spinal synaptic plasticities in rats with neuropathic pain. The different modulation on spinal LTD or LTP by low- or high-frequency EA may be a potential mechanism of different analgesic effects of EA on neuropathic pain. LTD of synaptic strength in the spinal dorsal horn in SNL rats may contribute to the long-lasting analgesic effects of EA at 2 Hz.
Pain | 2008
Yu-Qiu Jiang; Guo-Gang Xing; Wang Sz; Hui-Yin Tu; Ye-Nan Chi; Jie Li; Feng-Yu Liu; Ji-Sheng Han; You Wan
&NA; Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this sensitization. Numerous studies have focused primarily on DRG neurons; however, the injured axons themselves likely play an equally important role. Previous studies of neuropathic pain rats with spinal nerve ligation (SNL) showed that the hyperpolarization‐activated cyclic nucleotide‐gated cation (HCN) channel in DRG neuronal bodies is important for the development of neuropathic pain. Here, we investigate the role of the axonal HCN channel in neuropathic pain rats. Using the chronic constriction injury (CCI) model, we found abundant axonal accumulation of HCN channel protein at the injured sites accompanied by a slight decrease in DRG neuronal bodies. The function of these accumulated channels was verified by local application of ZD7288, a specific HCN blocker, which significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia, but not thermal hyperalgesia, was relieved significantly by ZD7288. These results suggest that axonal HCN channel accumulation plays an important role in ectopic discharges from injured spinal nerves and contributes to the development of mechanical allodynia in neuropathic pain rats.
PLOS ONE | 2010
Zhiqian Tong; Wenhong Luo; Yan-Qing Wang; Fei Yang; Ying Han; Hui Li; Hongjun Luo; Bo Duan; Tianle(徐天乐)) Xu; Qi-Liang Mao-Ying; Huangying Tan; Jun Wang; Hongmei Zhao; Feng-Yu Liu; You Wan
Background There is current interest in understanding the molecular mechanisms of tumor-induced bone pain. Accumulated evidence shows that endogenous formaldehyde concentrations are elevated in the blood or urine of patients with breast, prostate or bladder cancer. These cancers are frequently associated with cancer pain especially after bone metastasis. It is well known that transient receptor potential vanilloid receptor 1 (TRPV1) participates in cancer pain. The present study aims to demonstrate that the tumor tissue-derived endogenous formaldehyde induces bone cancer pain via TRPV1 activation under tumor acidic environment. Methodology/Principal Findings Endogenous formaldehyde concentration increased significantly in the cultured breast cancer cell lines in vitro, in the bone marrow of breast MRMT-1 bone cancer pain model in rats and in tissues from breast cancer and lung cancer patients in vivo. Low concentrations (1∼5 mM) of formaldehyde induced pain responses in rat via TRPV1 and this pain response could be significantly enhanced by pH 6.0 (mimicking the acidic tumor microenvironment). Formaldehyde at low concentrations (1 mM to 100 mM) induced a concentration-dependent increase of [Ca2+]i in the freshly isolated rat dorsal root ganglion neurons and TRPV1-transfected CHO cells. Furthermore, electrophysiological experiments showed that low concentration formaldehyde-elicited TRPV1 currents could be significantly potentiated by low pH (6.0). TRPV1 antagonists and formaldehyde scavengers attenuated bone cancer pain responses. Conclusions/Significance Our data suggest that cancer tissues directly secrete endogenous formaldehyde, and this formaldehyde at low concentration induces metastatic bone cancer pain through TRPV1 activation especially under tumor acidic environment.
Brain Research | 2012
Feng-Yu Liu; Yan-Ni Sun; Fa-Tian Wang; Qian Li; Li Su; Zi-Fang Zhao; Xiang-Ling Meng; Hong Zhao; Xi Wu; Qian Sun; Guo-Gang Xing; You Wan
The role of satellite glial cells (SGCs) of sensory ganglia in chronic pain begins to receive interest. The present study aims to investigate the contribution of SGC activation to the development of neuropathic pain. A neuropathic pain model was established by lumbar 5 spinal nerve ligation (SNL), and glial fibrillary acidic protein (GFAP) was used as a marker of SGC activation. It was found that SGCs were activated in the ipsilateral dorsal root ganglia (DRG) increased significantly as early as 4h following SNL, gradually increased to a peak level at day 7, and then stayed at a high level to the end of the experiment at day 56. SGC activation in the SNL group was significantly higher than that in the sham group at days 1, 3 and 7 after operation. Immunofluorescent double labeling showed that the activated SGCs encircled large, medium-sized and small neurons. The SGCs surrounded the small and medium-sized neurons were preferentially activated in the early phase, but shifted to large diameter neurons as time went on. Continuous infusion of fluorocitrate, a glial metabolism inhibitor, to the affected DRG via mini-osmotic pump for 7d significantly alleviated mechanical allodynia at day 7. These results suggest that SGCs in the DRG were activated after SNL. SGC activation contributed to the early maintenance of neuropathic pain.
Journal of Pharmacology and Experimental Therapeutics | 2007
Feng-Yu Liu; Guo-Gang Xing; Xiao-Xiu Qu; Isabella Shi Xu; Ji-Sheng Han; You Wan
5-Hydroxytryptamine (5-HT; serotonin) plays an important role in the descending control of nociception. 5-HT and its receptors have been extensively studied in the modulation of nociceptive transmission at the spinal level using behavioral tests that may be affected by the effects of 5-HT on motor performance and skin temperature. Using electrophysiological methods, the present study aimed to systematically investigate the roles of 5-HT receptor subtypes on the inhibitory effects of 5-HT on responses of the spinal wide dynamic range (WDR) neurons to C-fiber inputs in rats. Under basal conditions, topical application of 5-HT to the spinal cord inhibited the C-fiber responses of WDR neurons dose-dependently, whereas antagonists of 5-HT1A [WAY 100635 [N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-cyclohexanecarboxamide maleate salt]], 5-HT1B [GR 55562 [3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyrid-dinyl)phenyl]benzamide dihydrochloride]], 5-HT2A [ketanserin [3-[2-[4-(fluorobenzoyl)-1-piperidinyl]ethyl]-2,4[1H,3H]-quinazolinedione tartrate]], 5-HT2C [RS 102221 [8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulfonamido)phenyl-5-oxopentyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione hydrochloride]], 5-HT3 [MDL 72222 [3-tropanyl-3,5-dichlorobenzoate]], and 5-HT4 [GR 113808 ([1-[2-[(methylsulfonyl)-amino]ethyl]-4-piperidinyl]methyl 1-methyl-1H-indole-3-carboxylate)] had no effect on their own. The inhibitory effects of 5-HT were reversed by antagonists of 5-HT1B (GR 55562), 5-HT2A (ketanserin), 5-HT2C (RS 102221), 5-HT3 (MDL 72222), and 5-HT4 (GR 113808) but not by 5-HT1A (WAY 100635) receptor antagonists. Topical administration of agonists of 5-HT1A [(2R)-(+)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide], 5-HT1B [CGS 12066 [7-trifluoromethyl-4-(4-methyl-1-piperazinyl)pyrrolo-[1,2-a]quinoxaline maleate salt]], 5-HT2A (α-methyl-5-hydroxytryptamine maleate), 5-HT2C [MK 212 [6-chloro-2-(1-piperazinyl)pyrazine hydrochloride]], 5-HT3 [1-(3-chlorophenyl)biguanide hydrochloride], and 5-HT4 [2-[1-(4-piperonyl)piperazinyl]benzothiazole] also inhibited the C-responses. These results suggest that, under basal conditions, there is no tonic serotonergic inhibition on the C-responses of dorsal horn neurons, and multiple 5-HT receptor subtypes including 1B, 2A, 2C, 3, and 4 may be involved in mediating the inhibitory effects of 5-HT.
Brain Research | 2008
Yue Lu; Yan-Ni Sun; Xi Wu; Qian Sun; Feng-Yu Liu; Guo-Gang Xing; You Wan
The present study aims to investigate changes of spinal cord AMPA receptor GluR1 and its phosphorylation in inflammatory and neuropathic pain. Complete Freunds adjuvant (CFA) injection into the hind paw produced inflammatory thermal hyperalgesia that was assessed by decreased response latency to radiant heat; spinal nerve ligation (SNL) was used to induce mechanical allodynia that was evaluated with von Frey hairs. By method of Western blot, expression of GluR1 (the main subunit of the AMPA receptor) and its phosphorylated forms at serine 845 (pGluR1-Ser845) and at serine 831 (pGluR1-Ser831) in the spinal dorsal horn was observed. It was found that the expression of pGluR1-Ser845 and pGluR1-Ser831 increased significantly at 1 h after CFA injection, reached peak at 4 h and returned to the normal control level at 24 h, while no significant change was detected in GluR1 itself. In contrast, neither GluR1 nor pGluR1 showed any significant change in rats following SNL. These results suggest that phosphorylated GluR1 (pGluR1-Ser845 and pGluR1-Ser831) might play a role in the induction of inflammatory but not neuropathic pain.
Brain Research | 2010
Feng-Yu Liu; Xiao-Xiu Qu; Xu Ding; Jie Cai; Hong Jiang; You Wan; Ji-Sheng Han; Guo-Gang Xing
The descending serotonergic (5-HT) system is shown to be plastically altered under pathological conditions such as inflammation or peripheral nerve lesion. Although much evidence indicates that the potentiation of descending facilitatory 5-HT pathways may contribute to the development of chronic pain, the inhibition of descending inhibitory 5-HT system may be functionally more important to the development of central sensitization and neuropathic pain. In the present study, we observed that the inhibitory effects of 5-HT and its receptor agonists including 1A, 1B, 3, 4, and probably 2C receptor agonists, on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in the spinal cord decreased significantly following spinal nerve ligation (SNL). Furthermore, we found that the antagonistic effects of 5-HT 1B, 2C, 3, and 4 receptor antagonists on the 5-HT-induced inhibition of C-fiber responses of WDR neurons were also attenuated after SNL. In consistent with these observations, we also found an obvious decrease in the content of 5-HT and 5-HIAA, and a marked increase in the turnover rate of 5-HT (5-HIAA/5-HT) in the ipsilateral dorsal half of the lumbar spinal cord after SNL. These data indicate that a loss or decrease in the descending inhibitory 5-HT system upon the spinal processing of nociceptive information appears to occur following spinal nerve injury, and this kind of decrease in the descending inhibitory 5-HT system is proposed to be involved in the development of central sensitization and ultimately to the nerve injury-induced neuropathic pain.
Neuroscience Bulletin | 2012
Ying Han; Yan Li; Xing Xiao; Jia Liu; Xiang-Ling Meng; Feng-Yu Liu; Guo-Gang Xing; You Wan
ObjectiveOur previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1 (TRPV1). The present study further explored whether this tumor tissue-derived endogenous formaldehyde regulates TRPV1 expression in a rat model of bone cancer pain, and if so, what the possible signal pathways are during the development of this type of pain.MethodsA rat model of bone cancer pain was established by injecting living MRMT-1 tumor cells into the tibia. The formaldehyde levels were determined by high performance liquid chromatography, and the expression of TRPV1 was examined with Western blot and RT-PCR. In primary cultured dorsal root ganglion (DRG) neurons, the expression of TRPV1 was assessed after treatment with 100 μmol/L formaldehyde with or without pre-addition of PD98059 [an inhibitor for extracellular signal-regulated kinase], SB203580 (a p38 inhibitor), SP600125 [an inhibitor for c-Jun N-terminal kinase], BIM [a protein kinase C (PKC) inhibitor] or LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibitor].ResultsIn the rat model of bone cancer pain, formaldehyde concentration increased in blood plasma, bone marrow and the spinal cord. TRPV1 protein expression was also increased in the DRG. In primary cultured DRG neurons, 100 μmol/L formaldehyde significantly increased the TRPV1 expression level. Pre-incubation with PD98059, SB203580, SP600125 or LY294002, but not BIM, inhibited the formaldehyde-induced increase of TRPV1 expression.ConclusionFormaldehyde at a very low concentration up-regulates TRPV1 expression through mitogen-activated protein kinase and PI3K, but not PKC, signaling pathways. These results further support our previous finding that TRPV1 in peripheral afferents plays a role in bone cancer pain.