Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fengju Chen is active.

Publication


Featured researches published by Fengju Chen.


Nature | 2015

Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance

Antonina V. Kurtova; Jing Xiao; Qianxing Mo; Senthil Pazhanisamy; Ross Krasnow; Seth P. Lerner; Fengju Chen; Terrence T. Roh; Erica Lay; Philip Levy Ho; Keith Syson Chan

Cytotoxic chemotherapy is effective in debulking tumour masses initially; however, in some patients tumours become progressively unresponsive after multiple treatment cycles. Previous studies have demonstrated that cancer stem cells (CSCs) are selectively enriched after chemotherapy through enhanced survival. Here we reveal a new mechanism by which bladder CSCs actively contribute to therapeutic resistance via an unexpected proliferative response to repopulate residual tumours between chemotherapy cycles, using human bladder cancer xenografts. Further analyses demonstrate the recruitment of a quiescent label-retaining pool of CSCs into cell division in response to chemotherapy-induced damages, similar to mobilization of normal stem cells during wound repair. While chemotherapy effectively induces apoptosis, associated prostaglandin E2 (PGE2) release paradoxically promotes neighbouring CSC repopulation. This repopulation can be abrogated by a PGE2-neutralizing antibody and celecoxib drug-mediated blockade of PGE2 signalling. In vivo administration of the cyclooxygenase-2 (COX2) inhibitor celecoxib effectively abolishes a PGE2- and COX2-mediated wound response gene signature, and attenuates progressive manifestation of chemoresistance in xenograft tumours, including primary xenografts derived from a patient who was resistant to chemotherapy. Collectively, these findings uncover a new underlying mechanism that models the progressive development of clinical chemoresistance, and implicate an adjunctive therapy to enhance chemotherapeutic response of bladder urothelial carcinomas by abrogating early tumour repopulation.


Cell Reports | 2016

Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma

Fengju Chen; Yiqun Zhang; Yasin Şenbabaoğlu; Giovanni Ciriello; Lixing Yang; Ed Reznik; Brian Shuch; Goran Micevic; Guillermo Velasco; Eve Shinbrot; Michael S. Noble; Yiling Lu; Kyle Covington; Liu Xi; Jennifer Drummond; Donna M. Muzny; Hyojin Kang; Junehawk Lee; Pheroze Tamboli; Victor E. Reuter; Carl Simon Shelley; Benny Abraham Kaipparettu; Donald P. Bottaro; Andrew K. Godwin; Richard A. Gibbs; Gad Getz; Raju Kucherlapati; Peter J. Park; Chris Sander; Elizabeth P. Henske

On the basis of multidimensional and comprehensive molecular characterization (including DNA methalylation and copy number, RNA, and protein expression), we classified 894 renal cell carcinomas (RCCs) of various histologic types into nine major genomic subtypes. Site of origin within the nephron was one major determinant in the classification, reflecting differences among clear cell, chromophobe, and papillary RCC. Widespread molecular changes associated with TFE3 gene fusion or chromatin modifier genes were present within a specific subtype and spanned multiple subtypes. Differences in patient survival and in alteration of specific pathways (including hypoxia, metabolism, MAP kinase, NRF2-ARE, Hippo, immune checkpoint, and PI3K/AKT/mTOR) could further distinguish the subtypes. Immune checkpoint markers and molecular signatures of T cell infiltrates were both highest in the subtype associated with aggressive clear cell RCC. Differences between the genomic subtypes suggest that therapeutic strategies could be tailored to each RCC disease subset.


Nature Neuroscience | 2017

Identification of diverse astrocyte populations and their malignant analogs

Chia-Ching John Lin; Kwanha Yu; Asante Hatcher; Teng-Wei Huang; Hyun Kyoung Lee; Jeffrey Carlson; Matthew C. Weston; Fengju Chen; Yiqun Zhang; Wenyi Zhu; Carrie A. Mohila; Nabil Ahmed; Akash J. Patel; Benjamin R. Arenkiel; Jeffrey L. Noebels; Chad J. Creighton; Benjamin Deneen

Astrocytes are the most abundant cell type in the brain, where they perform a wide array of functions, yet the nature of their cellular heterogeneity and how it oversees these diverse roles remains shrouded in mystery. Using an intersectional fluorescence-activated cell sorting–based strategy, we identified five distinct astrocyte subpopulations present across three brain regions that show extensive molecular diversity. Application of this molecular insight toward function revealed that these populations differentially support synaptogenesis between neurons. We identified correlative populations in mouse and human glioma and found that the emergence of specific subpopulations during tumor progression corresponded with the onset of seizures and tumor invasion. In sum, we have identified subpopulations of astrocytes in the adult brain and their correlates in glioma that are endowed with diverse cellular, molecular and functional properties. These populations selectively contribute to synaptogenesis and tumor pathophysiology, providing a blueprint for understanding diverse astrocyte contributions to neurological disease.


Breast Cancer Research | 2015

Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis.

Mario Giuliano; Sabrina Herrera; Pavel Christiny; Chad A. Shaw; Chad J. Creighton; Tamika Mitchell; Raksha Bhat; Xiaomei Zhang; Sufeng Mao; Lacey E. Dobrolecki; Ahmed Al-rawi; Fengju Chen; Bianca Maria Veneziani; Xiang H.-F. Zhang; Susan G. Hilsenbeck; Alejandro Contreras; Carolina Gutierrez; Rinath Jeselsohn; Mothaffar F. Rimawi; C. Kent Osborne; Michael T. Lewis; Rachel Schiff; Meghana V. Trivedi

IntroductionReal-time monitoring of biologic changes in tumors may be possible by investigating the transitional cells such as circulating tumor cells (CTCs) and disseminated tumor cells in bone marrow (BM-DTCs). However, the small numbers of CTCs and the limited access to bone marrow aspirates in cancer patients pose major hurdles. The goal of this study was to determine whether breast cancer (BC) patient-derived xenograft (PDX) mice could provide a constant and renewable source of CTCs and BM-DTCs, thereby representing a unique system for the study of metastatic processes.MethodsCTCs and BM-DTCs, isolated from BC PDX-bearing mice, were identified by immunostaining for human pan-cytokeratin and nuclear counterstaining of red blood cell-lysed blood and bone marrow fractions, respectively. The rate of lung metastases (LM) was previously reported in these lines. Associations between the presence of CTCs, BM-DTCs, and LM were assessed by the Fisher’s Exact and Cochran-Mantel-Haenszel tests. Two separate genetic signatures associated with the presence of CTC clusters and with lung metastatic potential were computed by using the expression arrays of primary tumors from different PDX lines and subsequently overlapped to identify common genes.ResultsIn total, 18 BC PDX lines were evaluated. CTCs and BM-DTCs, present as either single cells or clusters, were detected in 83% (15 of 18) and 62.5% (10 to16) of the lines, respectively. A positive association was noted between the presence of CTCs and BM-DTCs within the same mice. LM was previously found in 9 of 18 (50%) lines, of which all nine had detectable CTCs. The presence of LM was strongly associated with the detection of CTC clusters but not with individual cells or detection of BM-DTCs. Overlapping of the two genetic signatures of the primary PDX tumors associated with the presence of CTC clusters and with lung metastatic potential identified four genes (HLA-DP1A, GJA1, PEG3, and XIST). This four-gene profile predicted distant metastases-free survival in publicly available datasets of early BC patients.ConclusionThis study suggests that CTCs and BM-DTCs detected in BC PDX-bearing mice may represent a valuable and unique preclinical model for investigating the role of these rare cells in tumor metastases.


Nature Communications | 2016

Functional annotation of rare gene aberration drivers of pancreatic cancer

Yiu Huen Tsang; Turgut Dogruluk; Philip M. Tedeschi; Joanna Wardwell-Ozgo; Hengyu Lu; Maribel Espitia; Nikitha Nair; Rosalba Minelli; Zechen Chong; Fengju Chen; Qing Edward Chang; Jennifer B. Dennison; Armel Dogruluk; Min Li; Haoqiang Ying; Joseph R. Bertino; Marie-Claude Gingras; Michael Ittmann; John E. Kerrigan; Ken Chen; Chad J. Creighton; Karina Eterovic; Gordon B. Mills; Kenneth L. Scott

As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets.


Neoplasia | 2014

Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance

Nagireddy Putluri; Suman Maity; Ramakrishna Kommagani; Chad J. Creighton; Vasanta Putluri; Fengju Chen; Sarmishta Nanda; Salil Kumar Bhowmik; Atsushi Terunuma; Tiffany H. Dorsey; Agostina Nardone; Xiaoyong Fu; Chad A. Shaw; Tapasree Roy Sarkar; Rachel Schiff; John P. Lydon; Bert W. O’Malley; Stefan Ambs; Gokul M. Das; George Michailidis; Arun Sreekumar

Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2–enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa.


Nature Communications | 2017

Pan-urologic cancer genomic subtypes that transcend tissue of origin

Fengju Chen; Yiqun Zhang; Dominick Bossé; Aly-Khan A. Lalani; A. Ari Hakimi; James J. Hsieh; Toni K. Choueiri; Don L. Gibbons; Michael Ittmann; Chad J. Creighton

Urologic cancers include cancers of the bladder, kidney, prostate, and testes, with common molecular features spanning different types. Here, we show that 1954 urologic cancers can be classified into nine major genomic subtypes, on the basis of multidimensional and comprehensive molecular characterization (including DNA methylation and copy number, and RNA and protein expression). Tissue dominant effects are first removed computationally in order to define these subtypes, which reveal common processes—reflecting in part tumor microenvironmental influences—driving cellular behavior across tumor lineages. Six of the subtypes feature a mixture of represented cancer types as defined by tissue or cell of origin. Differences in patient survival and in the manifestation of specific pathways—including hypoxia, metabolism, NRF2-ARE, Hippo, and immune checkpoint—can further distinguish the subtypes. Immune checkpoint markers and molecular signatures of macrophages and T cell infiltrates are relatively high within distinct subsets of each cancer type studied. The pan-urologic cancer genomic subtypes would facilitate information sharing involving therapeutic implications between tissue-oriented domains.Urological cancers have disparate tissues and cells of origin but share many molecular features. Here, the authors use multidimensional and comprehensive molecular characterization to classify urological cancers into nine major genomic subtypes, highlighting potential therapeutic targets.


The Journal of Neuroscience | 2016

Temporal Profiling of Astrocyte Precursors Reveals Parallel Roles for Asef during Development and after Injury

Lesley S. Chaboub; Jeanne M. Manalo; Hyun Kyoung Lee; Stacey M. Glasgow; Fengju Chen; Yoshihiro Kawasaki; Tetsu Akiyama; Chay T. Kuo; Chad J. Creighton; Carrie A. Mohila; Benjamin Deneen

Lineage development is a stepwise process, governed by stage-specific regulatory factors and associated markers. Astrocytes are one of the principle cell types in the CNS and the stages associated with their development remain very poorly defined. To identify these stages, we performed gene-expression profiling on astrocyte precursor populations in the spinal cord, identifying distinct patterns of gene induction during their development that are strongly correlated with human astrocytes. Validation studies identified a new cohort of astrocyte-associated genes during development and demonstrated their expression in reactive astrocytes in human white matter injury (WMI). Functional studies on one of these genes revealed that mice lacking Asef exhibited impaired astrocyte differentiation during development and repair after WMI, coupled with compromised blood–brain barrier integrity in the adult CNS. These studies have identified distinct stages of astrocyte lineage development associated with human WMI and, together with our functional analysis of Asef, highlight the parallels between astrocyte development and their reactive counterparts associated with injury. SIGNIFICANCE STATEMENT Astrocytes play a central role in CNS function and associated diseases. Yet the mechanisms that control their development remain poorly defined. Using the developing mouse spinal cord as a model system, we identify molecular changes that occur in developing astrocytes. These molecular signatures are strongly correlated with human astrocyte expression profiles and validation in mouse spinal cord identifies a host of new genes associated with the astrocyte lineage. These genes are present in reactive astrocytes in human white matter injury, and functional studies reveal that one of these genes, Asef, contributes to reactive astrocyte responses after injury. These studies identify distinct stages of astrocyte lineage development and highlight the parallels between astrocyte development and their reactive counterparts associated with injury.


Oncotarget | 2016

Positive association of collagen type I with non-muscle invasive bladder cancer progression

Michael Brooks; Qianxing Mo; Ross Krasnow; Philip Levy Ho; Yu-Cheng Lee; Jing Xiao; Antonina V. Kurtova; Seth P. Lerner; Gui Godoy; Weiguo Jian; Patricia D. Castro; Fengju Chen; David R. Rowley; Michael Ittmann; Keith Syson Chan

PURPOSE Non-muscle invasive bladder cancers (NMIBC) are generally curable, while ~15% progresses into muscle-invasive cancer with poor prognosis. While efforts have been made to identify genetic alternations associated with progression, the extracellular matrix (ECM) microenvironment remains largely unexplored. Type I collagen is a major component of the bladder ECM, and can be altered during cancer progression. We set out to explore the association of type I collagen with NMIBC progression. EXPERIMENTAL DESIGN The associations of COL1A1 and COL1A2 mRNA levels with progression were evaluated in a multi-center cohort of 189 patients with NMIBCs. Type I collagen protein expression and structure were evaluated in an independent single-center cohort of 80 patients with NMIBCs. Immunohistochemical analysis was performed and state-of-the-art multi-photon microscopy was used to evaluate collagen structure via second harmonic generation imaging. Progression to muscle invasion was the primary outcome. Kaplan-Meier method, Cox regression, and Wilcoxon rank-sum were used for statistical analysis. RESULTS There is a significant association of high COL1A1 and COL1A2 mRNA expression in patients with poor progression-free survival (P=0.0037 and P=0.011, respectively) and overall survival (P=0.024 and P=0.012, respectively). Additionally, immunohistochemistry analysis of type I collagen protein deposition revealed a significant association with progression (P=0.0145); Second-harmonic generation imaging revealed a significant lower collagen fiber curvature ratio in patients with invasive progression (P = 0.0018). CONCLUSIONS Alterations in the ECM microenvironment, particularly type I collagen, likely contributes to bladder cancer progression. These findings will open avenues to future functional studies to investigate ECM-tumor interaction as a potential therapeutic intervention to treat NMIBCs.


Clinical Cancer Research | 2018

Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases

Chad J. Creighton; Fengju Chen; Yiqun Zhang; Don L. Gibbons; Benjamin Deneen; David J. Kwiatkowski; Michael Ittmann

Purpose: The Cancer Genome Atlas data resources represent an opportunity to explore commonalities across cancer types involving multiple molecular levels, but tumor lineage and histology can represent a barrier in moving beyond differences related to cancer type. Experimental Design: On the basis of gene expression data, we classified 10,224 cancers, representing 32 major types, into 10 molecular-based “classes.” Molecular patterns representing tissue or histologic dominant effects were first removed computationally, with the resulting classes representing emergent themes across tumor lineages. Results: Key differences involving mRNAs, miRNAs, proteins, and DNA methylation underscored the pan-cancer classes. One class expressing neuroendocrine and cancer-testis antigen markers represented ∼4% of cancers surveyed. Basal-like breast cancers segregated into an exclusive class, distinct from all other cancers. Immune checkpoint pathway markers and molecular signatures of immune infiltrates were most strongly manifested within a class representing ∼13% of cancers. Pathway-level differences involving hypoxia, NRF2-ARE, Wnt, and Notch were manifested in two additional classes enriched for mesenchymal markers and miR200 silencing. Conclusions: All pan-cancer molecular classes uncovered here, with the important exception of the basal-like breast cancer class, involve a wide range of cancer types and would facilitate understanding the molecular underpinnings of cancers beyond tissue-oriented domains. Numerous biological processes associated with cancer in the laboratory setting were found here to be coordinately manifested across large subsets of human cancers. The number of cancers manifesting features of neuroendocrine tumors may be much higher than previously thought, which disease is known to occur in many different tissues. Clin Cancer Res; 24(9); 2182–93. ©2018 AACR.

Collaboration


Dive into the Fengju Chen's collaboration.

Top Co-Authors

Avatar

Chad J. Creighton

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yiqun Zhang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Qianxing Mo

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Michael Ittmann

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Don L. Gibbons

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gordon B. Mills

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yiu Huen Tsang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Deneen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chad A. Shaw

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge