Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fengju Song is active.

Publication


Featured researches published by Fengju Song.


Carcinogenesis | 2008

Polymorphisms in MicroRNA Targets: A Gold Mine for Molecular Epidemiology

Kexin Chen; Fengju Song; George A. Calin; Qingyi Wei; Xishan Hao; Wei Zhang

MicroRNAs are non-coding small RNAs that regulate gene expression by Watson-Crick base pairing to target messenger RNA (mRNA). They are involved in most biological and pathological processes, including tumorigenesis. The binding of microRNA to mRNA is critical for regulating the mRNA level and protein expression. However, this binding can be affected by single-nucleotide polymorphisms that can reside in the microRNA target site, which can either abolish existing binding sites or create illegitimate binding sites. Therefore, polymorphisms in microRNA can have a differing effect on gene and protein expression and represent another type of genetic variability that can influence the risk of certain human diseases. Different approaches have been used to predict and identify functional polymorphisms within microRNA-binding sites. The biological relevance of these polymorphisms in predicted microRNA-binding sites is beginning to be examined in large case-control studies.


PLOS ONE | 2013

Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer

Hong Zheng; Lina Zhang; Yanrui Zhao; Da Yang; Fengju Song; Yang Wen; Quan Hao; Zhibin Hu; Wei Zhang; Kexin Chen

Background Most (70%) epithelial ovarian cancers (EOCs) are diagnosed late. Non-invasive biomarkers that facilitate disease detection and predict outcome are needed. The microRNAs (miRNAs) represent a new class of biomarkers. This study was to identify and validate plasma miRNAs as biomarkers in EOC. Methodology/Principal Findings We evaluated plasma samples of 360 EOC patients and 200 healthy controls from two institutions. All samples were grouped into screening, training and validation sets. We scanned the circulating plasma miRNAs by TaqMan low-density array in the screening set and identified/validated miRNA markers by real-time polymerase chain reaction assay in the training set. Receiver operating characteristic and logistic regression analyses established the diagnostic miRNA panel, which were confirmed in the validation sets. We found higher plasma miR-205 and lower let-7f expression in cases than in controls. MiR-205 and let-7f together provided high diagnostic accuracy for EOC, especially in patients with stage I disease. The combination of these two miRNAs and carbohydrate antigen-125 (CA-125) further improved the accuracy of detection. MiR-483-5p expression was elevated in stages III and IV compared with in stages I and II, which was consistent with its expression pattern in tumor tissues. Furthermore, lower levels of let-7f were predictive of poor prognosis in EOC patients. Conclusions/Significance Our findings indicate that plasma miR-205 and let-7f are biomarkers for ovarian cancer detection that complement CA-125; let-7f may be predictive of ovarian cancer prognosis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Functional SNP in the microRNA-367 binding site in the 3′UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification

Lina Zhang; Yuexin Liu; Fengju Song; Hong Zheng; Limei Hu; Hong Lu; Peifang Liu; Xishan Hao; Wei Zhang; Kexin Chen

We have evaluated and provided evidence that the ryanodine receptor 3 gene (RYR3), which encodes a large protein that forms a calcium channel, is important for the growth, morphology, and migration of breast cancer cells. A putative binding site for microRNA-367 (miR-367) exists in the 3′UTR of RYR3, and a genetic variant, rs1044129 A→G, is present in this binding region. We confirmed that miR-367 regulates the expression of a reporter gene driven by the RYR3 3′UTR and that the regulation was affected by the RYR3 genotype. A thermodynamic model based on base pairing and the secondary structure of the RYR3 mRNA and miR-367 miRNA showed that miR-367 had a higher binding affinity for the A genotype than for the G genotype. The rs1044129 SNP was genotyped in 1,532 breast cancer cases and 1,600 healthy Chinese women. The results showed that compared with the AA genotype, G was a risk genotype for breast cancer development and was also associated with breast cancer calcification and poor survival. Thus, rs1044129 is a unique SNP that resides in a miRNA-gene regulatory loop that affects breast cancer risk, calcification, and survival.


Clinical Cancer Research | 2009

An miR-502–Binding Site Single-Nucleotide Polymorphism in the 3′-Untranslated Region of the SET8 Gene Is Associated with Early Age of Breast Cancer Onset

Fengju Song; Hong Zheng; Ben Liu; Sheng Wei; Hongji Dai; Lina Zhang; George A. Calin; Xishan Hao; Qingyi Wei; Wei Zhang; Kexin Chen

Purpose: MicroRNAs regulate gene expression by binding to the 3′-untranslated region (UTR) of target genes. Single-nucleotide polymorphisms of critical genes may affect their regulation by microRNAs. We have identified a single-nucleotide polymorphism within the miR-502 seed binding region in the 3′-UTR of the SET8 gene. SET8 methylates TP53 and regulates genome stability. We investigated the role of this SET8 single-nucleotide polymorphism and in concert with the TP53 codon 72 single-nucleotide polymorphism in the propensity for onset of breast cancer. Experimental Design: We measured the SET8 single-nucleotide polymorphisms in a case-control study on 1,110 breast cancer cases and 1,097 controls. Results: The SET8 CC and TP53 GG genotypes were independently associated with an earlier age of breast cancer onset in an allele-dose-dependent manner (for SET8, 52.2 years for TT, 51.4 for TC, and 49.5 for CC; and for TP53, 53.1 years for CC, 51.5 for GC, 50.7 for GG). Individuals with combined SET8 CC and TP53 GG genotypes developed cancer at a median age of 47.7 years as compared with 54.6 years for individuals with combined SET8 TT and TP53 CC genotypes. In the 51 breast cancer tissue samples tested, the SET8 CC genotype was associated with reduced SET8, but not miR-502, transcript levels. Conclusions: These data suggest that the miR-502–binding site single-nucleotide polymorphism in the 3′-UTR of SET8 modulates SET8 expression and contributes to the early development of breast cancer, either independently or together with the TP53 codon 72 single-nucleotide polymorphism. Larger studies with multiethnic groups are warranted to validate our findings. (Clin Cancer Res 2009;15(19):6292–300)


Nature Genetics | 2015

Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

Matthew H. Law; D. Timothy Bishop; Jeffrey E. Lee; Myriam Brossard; Nicholas G. Martin; Eric K. Moses; Fengju Song; Jennifer H. Barrett; Rajiv Kumar; Douglas F. Easton; Paul Pharoah; Anthony J. Swerdlow; Katerina P. Kypreou; John C. Taylor; Mark Harland; Juliette Randerson-Moor; Lars A. Akslen; Per Arne Andresen; M.-F. Avril; Esther Azizi; Giovanna Bianchi Scarrà; Kevin M. Brown; Tadeusz Dębniak; David L. Duffy; David E. Elder; Shenying Fang; Eitan Friedman; Pilar Galan; Paola Ghiorzo; Elizabeth M. Gillanders

Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10−8), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.


Clinical Cancer Research | 2014

Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family

Fengju Song; Da Yang; Ben Liu; Yan Guo; Hong Zheng; Lian Li; Tao Wang; Jinpu Yu; Yanrui Zhao; Ruifang Niu; Han Liang; Hans Winkler; Wei Zhang; Xishan Hao; Kexin Chen

Purpose: Our aim was to investigate whether microRNAs can predict the clinical outcome of patients with gastric cancer. We used integrated analysis of microRNA and mRNA expression profiles to identify gastric cancer microRNA subtypes and their underlying regulatory scenarios. Experimental Design: MicroRNA-based gastric cancer subtypes were identified by consensus clustering analysis of microRNA profiles of 90 gastric cancer tissues. Activated pathways in the subtypes were identified by gene expression profiles. Further integrated analysis was conducted to model a microRNA regulatory network for each subtype. RNA and protein expression were analyzed by RT-PCR and tissue microarray, respectively, in a cohort of 385 gastric cancer cases (including the 90 cases for profiling) to validate the key microRNAs and targets in the network. Both in vitro and in vivo experiments were carried out to further validate the findings. Results: MicroRNA profiles of 90 gastric cancer cases identified two microRNA subtypes significantly associated with survival. The poor-prognosis gastric cancer microRNA subtype was characterized by overexpression of epithelial-to-mesenchymal transition (EMT) markers. This gastric cancer “mesenchymal subtype” was further validated in a patient cohort comprising 385 cases. Integrated analysis identified a key microRNA regulatory network likely driving the gastric cancer mesenchymal subtype. Three of the microRNAs (miR-200c, miR-200b, and miR-125b) targeting the most genes in the network were significantly associated with survival. Functional experiments demonstrated that miR-200b suppressed ZEB1, augmented E-cadherin, inhibited cell migration, and suppressed tumor growth in a mouse model. Conclusions: We have uncovered a key microRNA regulatory network that defines the mesenchymal gastric cancer subtype significantly associated with poor overall survival in gastric cancer. Clin Cancer Res; 20(4); 878–89. ©2013 AACR.


Human Molecular Genetics | 2013

Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans

Mingfeng Zhang; Fengju Song; Liming Liang; Hongmei Nan; Jiangwen Zhang; Hongliang Liu; Li E. Wang; Qingyi Wei; Jeffrey E. Lee; Christopher I. Amos; Peter Kraft; Abrar A. Qureshi; Jiali Han

Aiming to identify novel genetic loci for pigmentation and skin cancer, we conducted a series of genome-wide association studies on hair color, eye color, number of sunburns, tanning ability and number of non-melanoma skin cancers (NMSCs) among 10 183 European Americans in the discovery stage and 4504 European Americans in the replication stage (for eye color, 3871 males in the discovery stage and 2496 males in the replication stage). We targeted novel chromosome regions besides the known ones for replication. As a result, we identified a new region downstream of the EDNRB gene on 13q22 associated with hair color and the strongest association was the single-nucleotide polymorphism (SNP) rs975739 (P = 2.4 × 10(-14); P = 5.4 × 10(-9) in the discovery set and P = 1.2 × 10(-6) in the replication set). Using blue, intermediate (including green) and brown eye colors as co-dominant outcomes, we identified the SNP rs3002288 in VASH2 on 1q32.3 associated with brown eye (P = 7.0 × 10(-8); P = 5.3 × 10(-5) in the discovery set and P = 0.02 in the replication set). Additionally, we identified a significant interaction between the SNPs rs7173419 and rs12913832 in the OCA2 gene region on brown eye color (P-value for interaction = 3.8 × 10(-3)). As for the number of NMSCs, we identified two independent SNPs on chr6 and one SNP on chromosome 14: rs12203592 in IRF4 (P = 7.2 × 10(-14); P = 1.8 × 10(-8) in the discovery set and P = 6.7 × 10(-7) in the replication set), rs12202284 between IRF4 and EXOC2 (P = 5.0 × 10(-8); P = 6.6 × 10(-7) in the discovery set and P = 3.0 × 10(-3) in the replication set) and rs8015138 upstream of GNG2 (P = 6.6 × 10(-8); P = 5.3 × 10(-7) in the discovery set and P = 0.01 in the replication set).


Nature Genetics | 2013

A variant in FTO shows association with melanoma risk not due to BMI

Mark M. Iles; Matthew H. Law; Simon N. Stacey; Jiali Han; Shenying Fang; Ruth M. Pfeiffer; Mark Harland; Stuart Macgregor; John C. Taylor; Katja K. Aben; Lars A. Akslen; M.-F. Avril; Esther Azizi; Bert Bakker; Kristrun R. Benediktsdottir; Wilma Bergman; Giovanna Bianchi Scarrà; Kevin M. Brown; Donato Calista; Valérie Chaudru; Maria Concetta Fargnoli; Anne E. Cust; Florence Demenais; Anne C. de Waal; Tadeusz Dȩbniak; David E. Elder; Eitan Friedman; Pilar Galan; Paola Ghiorzo; Elizabeth M. Gillanders

We report the results of an association study of melanoma that is based on the genome-wide imputation of the genotypes of 1,353 cases and 3,566 controls of European origin conducted by the GenoMEL consortium. This revealed an association between several SNPs in intron 8 of the FTO gene, including rs16953002, which replicated using 12,313 cases and 55,667 controls of European ancestry from Europe, the USA and Australia (combined P = 3.6 × 10−12, per-allele odds ratio for allele A = 1.16). In addition to identifying a new melanoma-susceptibility locus, this is to our knowledge the first study to identify and replicate an association with SNPs in FTO not related to body mass index (BMI). These SNPs are not in intron 1 (the BMI-related region) and exhibit no association with BMI. This suggests FTOs function may be broader than the existing paradigm that FTO variants influence multiple traits only through their associations with BMI and obesity.


PLOS Medicine | 2013

Risk of a Second Primary Cancer after Non-melanoma Skin Cancer in White Men and Women: A Prospective Cohort Study

Fengju Song; Abrar A. Qureshi; Edward Giovannucci; Charles S. Fuchs; Wendy Yvonne Chen; Meir J. Stampfer; Jiali Han

Studies have suggested a positive association between history of non-melanoma skin cancer (NMSC) and risk of subsequent cancer at other sites. This prospective study found a modestly increased risk of subsequent malignancies among individuals with a history of NMSC, specifically breast and lung cancer in women and melanoma in both men and women.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy.

Kexin Chen; Da Yang; Xiangchun Li; Baocun Sun; Fengju Song; Wenfeng Cao; Daniel J. Brat; Zhibo Gao; Haixin Li; Han Liang; Yanrui Zhao; Hong Zheng; Miao Li; Jan C. Buckner; Scott D. Patterson; Xiang Ye; Christoph Reinhard; Anahita Bhathena; Deepa Joshi; Paul S. Mischel; Carlo M. Croce; Yi Michael Wang; Sreekumar Raghavakaimal; Hui Li; Xin Lu; Yang Pan; Han Chang; Sujuan Ba; Longhai Luo; Webster K. Cavenee

Significance We have identified a lethal subtype of gastric cancer (GC) that is characterized by high levels of clonal heterogeneity and TP53 (tumor protein P53) mutation. We have also uncovered key novel mutations in the targetable NRG1 (neuregulin-1) and ERBB4 (V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog 4) ligand-receptor pair and identified BRCA2 (breast cancer 2, early onset) mutations as new genetic markers to predict better survival for GC. Our study represents a novel approach for GC personalized medicine and identified novel clinical actionable therapies for GC therapy. Gastric cancer (GC) is a highly heterogeneous disease. To identify potential clinically actionable therapeutic targets that may inform individualized treatment strategies, we performed whole-exome sequencing on 78 GCs of differing histologies and anatomic locations, as well as whole-genome sequencing on two GC cases, each with three primary tumors and two matching lymph node metastases. The data showed two distinct GC subtypes with either high-clonality (HiC) or low-clonality (LoC). The HiC subtype of intratumoral heterogeneity was associated with older age, TP53 (tumor protein P53) mutation, enriched C > G transition, and significantly shorter survival, whereas the LoC subtype was associated with younger age, ARID1A (AT rich interactive domain 1A) mutation, and significantly longer survival. Phylogenetic tree analysis of whole-genome sequencing data from multiple samples of two patients supported the clonal evolution of GC metastasis and revealed the accumulation of genetic defects that necessitate combination therapeutics. The most recurrently mutated genes, which were validated in a separate cohort of 216 cases by targeted sequencing, were members of the homologous recombination DNA repair, Wnt, and PI3K-ERBB pathways. Notably, the drugable NRG1 (neuregulin-1) and ERBB4 (V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog 4) ligand-receptor pair were mutated in 10% of GC cases. Mutations of the BRCA2 (breast cancer 2, early onset) gene, found in 8% of our cohort and validated in The Cancer Genome Atlas GC cohort, were associated with significantly longer survivals. These data define distinct clinicogenetic forms of GC in the Chinese population that are characterized by specific mutation sets that can be investigated for efficacy of single and combination therapies.

Collaboration


Dive into the Fengju Song's collaboration.

Top Co-Authors

Avatar

Kexin Chen

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Hong Zheng

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Abrar A. Qureshi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Xishan Hao

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Hongji Dai

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yubei Huang

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Haixin Li

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey E. Lee

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge