Fengjuan Chen
Lanzhou University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fengjuan Chen.
Journal of Materials Chemistry | 2012
Guoqiang Xie; Pinxian Xi; Hongyan Liu; Fengjuan Chen; Liang Huang; Yanjun Shi; Fengping Hou; Zhengzhi Zeng; Changwei Shao; Jun Wang
A superparamagnetic graphene oxide–Fe3O4 hybrid composite (GO–Fe3O4) was prepared via a simple and effective chemical method. Amino-functionalized Fe3O4 (NH2-Fe3O4) particles are firmly deposited on the graphene oxide sheets. The graphene oxide sheets could prevent NH2-Fe3O4 particles from agglomeration and enable a good dispersion of these oxide particles. The as-prepared GO–Fe3O4 hybrid composite had a much higher thermal stability than graphene oxide. The amount of NH2-Fe3O4 loaded on GO was estimated to be 23.6 wt% by atomic absorption spectrometry. The specific saturation magnetization (Ms) of the GO–Fe3O4 hybrid composite is 15 emu g−1. The magnetic GO–Fe3O4 composite has been employed as adsorbent for the magnetic separation of dye contaminants from water. The adsorption test of dyes (Methylene Blue (MB) and Neutral Red (NR)) demonstrates that it only takes 30 min for MB and 90 min for NR to attain equilibrium. The adsorption capacities for MB and NR in the concentration range studied are 167.2 and 171.3 mg g−1, respectively. The GO–Fe3O4 hybrid composite can be easily manipulated in magnetic field for desired separation, leading to the removal of dyes from polluted water. These GO–Fe3O4 hybrid composites have great potential applications in removing organic dyes from polluted water.
ACS Applied Materials & Interfaces | 2014
Hongyan Liu; Ju Cheng; Fengjuan Chen; Fengping Hou; Decheng Bai; Pinxian Xi; Zhengzhi Zeng
In bone tissue engineering, it is imperative to design multifunctional biomaterials that can induce and assemble bonelike apatite that is close to natural bone. In this study, graphene oxide (GO) was functionalized by carrageenan. The resulting GO-carrageenan (GO-Car) composite was further used as a substrate for biomimetic and cell-mediated mineralization of hydroxyapatite (HA). It was confirmed that carrageenan on the GO surface facilitated the nucleation of HA. The observation of the effect of the GO-Car on the adhesion, morphology, and proliferation of MC3T3-E1 cells was investigated. In vitro studies clearly show the effectiveness of GO-Car in promoting HA mineralization and cell differentiation. The results of this study suggested that the GO-Car hybrid will be a promising material for bone regeneration and implantation.
Journal of Inorganic Biochemistry | 2009
Pinxian Xi; Zhihong Xu; Fengjuan Chen; Zhengzhi Zeng; Xiao-wen Zhang
2-Phenylquinoline-4-carboylhydrazide (HL), and its novel nickel(II), zinc(II) complexes [M(HL)(2)(L)].2H(2)O.NO(3) (M=Ni (1), M=Zn (2)), have been synthesized and characterized by elemental analysis, molar conductivity, and IR spectra. The crystal structure of [Ni(HL)(2)(L)].2H(2)O.NO(3) obtained from ethanol solution was determined by X-ray diffraction analysis, crystallized in the rhombohedral system, space group R3 , Z=18, a=31.913(3)A, b=31.913(3)A, c=27.709(2)A, alpha=90 degrees , beta=90 degrees , gamma=120 degrees , R(1)=0.0647. The interactions of the complexes and the ligand with calf thymus DNA had been investigated using UV-Vis spectra, fluorescent spectra, CD (circular dichroism) spectra, CV (cyclic voltammetry) and viscosity measurements. These compounds were tested against MFC (mouse forestomach carcinoma) cell lines. The complex 1 showed significant cytotoxic activity against MFC cell lines. The cleavage reaction on plasmid DNA has been monitored by agarose gel electrophoresis. Results suggest that the two complexes bound to DNA via a groove binding mode and the complexes can cleave pBR322 DNA.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011
Min Xu; Zhaorong Ma; Liang Huang; Fengjuan Chen; Zhengzhi Zeng
The binding properties on [PrL2(NO3)](NO3)2 (L=9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperaziny)-7-oxo-7Hpyrido[1,2,3-de]-1,4-benzoxazine-6-carbaldehyde benzoyl hydrazone) to bovine serum albumin (BSA) have been studied for the first time using fluorescence spectroscopy in combination with UV-Vis absorbance spectroscopy. The results showed that [PrL2(NO3)](NO3)2 strongly quenched the intrinsic fluorescence of BSA through a static quenching procedure, and non-radiation energy transfer happened within molecules. The number of binding site was about 1, and the efficiency of Förster energy transfer provided a distance of 4.26 nm between tryptophan and [PrL2(NO3)](NO3)2 binding site. At 288, 298, 310 K, the quenching constants of BSA-[PrL2(NO3)](NO3)2 system were 5.11×10(4), 4.33×10(4) and 3.71×10(4) l M(-1). ΔH, ΔS and ΔG were obtained based on the quenching constants and thermodynamic theory (ΔH<0, ΔS>0 and ΔG<0). These results indicated that hydrophobic and electrostatic interactions are the mainly binding forces in the [PrL2(NO3)](NO3)2-BSA system. In addition, the CD spectra have proved that BSA secondary structure changed in the presence of [PrL2(NO3)](NO3)2 in aqueous solution. Moreover, the interaction between [PrL2(NO3)](NO3)2 and calf thymus DNA (CT DNA) was studied by spectroscopy and viscosity measurements, which showed that the binding mode of the [PrL2(NO3)](NO3)2 with DNA is intercalation. The DNA cleavage results show that in the absence of any reducing agent, the [PrL2(NO3)](NO3)2 can cleave plasmid pBR322 DNA and its hydrolytic mechanism was demonstrated with hydroxyl radical scavengers and singlet oxygen quenchers.
Nanoscale | 2014
Hongyan Liu; Ju Cheng; Fengjuan Chen; Decheng Bai; Changwei Shao; Jun Wang; Pinxian Xi; Zhengzhi Zeng
We report a facile modification of graphene oxide (GO) by gelatin to mimic charged proteins present in the extracellular matrix during bone formation. The bioinspired surface of GO-gelatin (GO-Gel) composite was used for biomimetic mineralization of hydroxyapatite (HA). A detailed structural and morphological characterization of the mineralized composite was performed. Additionally, MC3T3-E1 cells were cultured on the GO-Gel surfaces to observe various cellular activities and HA mineralization. Higher cellular activities such as cell adhesion, cell proliferation, and alkaline phosphatase activity (ALP) were observed on the GO-Gel surface compared with the GO or glass surface. The increase of ALP confirms that the proposed GO-Gel promotes the osteogenic differentiation of MC3T3-E1 cells. Moreover, the evidence of mineralization evaluated by scanning electron microscopy (SEM) and alizarin red staining (ARS) corroborate the idea that a native osteoid matrix is ultimately deposited. All these data suggest that the GO-Gel hybrids will have great potential as osteogenesis promoting scaffolds for successful application in bone surgery.
Journal of Photochemistry and Photobiology B-biology | 2008
Xiao-hui Liu; Pinxian Xi; Fengjuan Chen; Zhi-hong Xu; Zhengzhi Zeng
The interaction of 1-phenyl-3-(coumarin-6-yl)sulfonylurea (SU22) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectroscopy combined with UV-absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy techniques under simulative physiological conditions for the first time. Fluorescence data and UV-absorption spectra revealed that the quenching mechanism of fluorescence of BSA by SU22 was a static quenching process and the number of binding sites was about 0.8858; the thermodynamic parameters (DeltaG=-29.23 kJ mol(-1), DeltaH=-47.48 kJ mol(-1), and DeltaS=-61.24 J mol(-1)K(-1)) explained that hydrogen bond and Van der Waals interaction were the main binding force stabilizing the complex. The binding average distance between SU22 and BSA was obtained (3.20 nm) on the basis of the Försters theory. In addition, The CD spectra and FT-IR spectra have proved that BSA secondary structure changed in the presence of SU22 in aqueous solution.
Journal of Materials Chemistry | 2012
Guoqiang Xie; Ju Cheng; Yifan Li; Pinxian Xi; Fengjuan Chen; Hongyan Liu; Fengping Hou; Yanjun Shi; Liang Huang; Zhihong Xu; Decheng Bai; Zhengzhi Zeng
In this research, we developed a “clean” and “wet” route to produce sandwich-like fluorescent CdQ2/GO composites sheets starting from graphene oxide (GO) and Cd2+ in water/ethanol solution in one pot. The as-prepared CdQ2/GO composites sheets were fully characterized by IR, XRD, TEM and TGA analysis. The CdQ2/GO composites exhibited a strong fluorescence emission centered at 500 nm. Both the solid sample and the water dispersion could demonstrate strong green fluorescence. When incubated with Hep G2 cells at 37 °C, the CdQ2/GO composites were found to adhere to the surroundings of the cell membrane, resulting in strong green fluorescence observed by laser confocal fluorescence microscopy. MTT assay experiment results showed that this kind of composite material had low cytotoxicity at the concentration of 400 μg mL−1. We believe this method and composite materials will open up a brand new avenue for wider applications of graphene-based materials in the detection of other types of biomarkers, biomolecular interactions, and fluorescence imaging in vitro and in vivo.
Journal of Fluorescence | 2009
Pinxian Xi; Zhi-hong Xu; Xiao-hui Liu; Fengjuan Chen; Zhengzhi Zeng; Xiao-wen Zhang; Ying Liu
Abstract1-(4-Aminoantipyrine)-3-tosylurea (H2L) and its three lanthanide (III) complexes, M(H2L)3 3NO3 [where M = Nd(III), Sm(III) and Eu(III)], have been synthesized and characterized. In addition, the DNA-binding properties of the three complexes have been investigated by UV–vis (ultraviolet and visible) absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, cyclic voltammetry, and viscosity measurements. Results suggest that the three complexes bind to DNA via a groove binding mode. Furthermore, the antioxidant activity (superoxide and hydroxyl radical) of the metal complexes was determined by using spectrophotometer methods in vitro. These complexes were found to possess potent antioxidant activity and be better than standard antioxidants like vitamin C and mannitol. Absorption spectra of the complex 3 inTris-HCl buffer upon addition of calf-thymus DNA. [complex]=1×10-5 M, [DNA]=(0-1) ×10-5 M. Arrow shows the absorbance changing upon increasing DNA concentrations. Inset: plots of [DNA]/(εa – εf) versus [DNA] for the titration of DNA with the complex.
Nanoscale | 2013
Pinxian Xi; Yang Cao; Fengchun Yang; Cai Ma; Fengjuan Chen; Sha Yu; Shuai Wang; Zhengzhi Zeng; Xin Zhang
We employed an efficient and facile route to synthesise monodisperse Pd-based bimetallic nanocrystals (MPd: M = Cu, Co and Ni) via a controlled co-reduction of Pd(ii) chloride and M(ii) nitrate at 200-230 °C in the presence of oleylamine (OAm). These monodisperse Pd-based nanocrystals have small dimensions, unique structures and homogeneous morphology, thus exhibit efficient catalytic activities for methanol oxidation in alkaline solution, which is much better than commercial Pd/C with same amount of palladium. The catalytic activities of these nanocrystals followed the order of NiPd/C > CoPd/C > CuPd/C > commercial Pd/C, due to the different synergistic effects. Our results show that these Pd-based bimetallic nanocrystals can be promising as practical catalysts for methanol oxidation reactions and other catalytic reactions in further investigations.
Journal of Biological Inorganic Chemistry | 2009
Pinxian Xi; Liang Huang; Heng Liu; Peng-fei Jia; Fengjuan Chen; Min Xu; Zhengzhi Zeng
The synthesis and spectral properties of a chemidosimeter 1,4-di[2-(6-ethylamino-3-ethylimino-2,7-dimethyl-3H-xanthen-9-yl) benzoic acid (aminomethyl)-3-phenylthiourea] benzene (1) for Hg(II) ions are reported, and it has been demonstrated that 1 can be used as a fluorescent probe for monitoring Hg(II) ions in living cells.Graphical abstractA highly sensitive fluorescent probe (1) was developed as a fluorescent and colorimetric chemodosimeter in dimethyl sulfoxide/methanol solution with a broad pH range (pH 5–10) and high selectivity toward Hg2+ ions but no significant response toward other competitive cations. Furthermore, by means of confocal laser scanning microscopy experiments, it is demonstrated that 1 can be used as a fluorescent probe for monitoring Hg2+ in living cells.