Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fengmei Pi is active.

Publication


Featured researches published by Fengmei Pi.


Nano Today | 2015

RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications

Hui Li; Taek Lee; Thomas D. Dziubla; Fengmei Pi; Sijin Guo; Jing Xu; Chan Li; Farzin Haque; Xing-Jie Liang; Peixuan Guo

Summary The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.


Advanced Materials | 2016

Controllable Self-Assembly of RNA Tetrahedrons with Precise Shape and Size for Cancer Targeting.

Hui Li; Fengmei Pi; Sijin Guo; Luda S. Shlyakhtenko; Wah Chiu; Dan Shu; Peixuan Guo

RNA tetrahedral nanoparticles with two different sizes are successfully assembled by a one-pot bottom-up approach with high efficiency and thermal stability. The reported design principles can be extended to construct higher-order polyhedral RNA architectures for various applications such as targeted cancer imaging and therapy.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery

Fengmei Pi; Hui Zhang; Hui Li; Varatharasa Thiviyanathan; David G. Gorenstein; Anil K. Sood; Peixuan Guo

A novel modified nucleic acid nanoparticle harboring an annexin A2 aptamer for ovarian cancer cell targeting and a GC rich sequence for doxorubicin loading is designed and constructed. The system utilizes a highly stable three-way junction (3WJ) motif from phi29 packaging RNA as a core structure. A phosphorothioate-modified DNA aptamer targeting annexin A2, Endo28, was conjugated to one arm of the 3WJ. The pRNA-3WJ motif retains correct folding of attached aptamer, keeping its functions intact. It is of significant utility for aptamer-mediated targeted delivery. The DNA/RNA hybrid nanoparticles remained intact after systemic injection in mice and strongly bound to tumors with little accumulation in healthy organs 6 h post-injection. The Endo28-3WJ-Sph1/Dox intercalates selectively enhanced toxicity to annexin A2 positive ovarian cancer cells in vitro. The constructed RNA/DNA hybrid nanoparticles can potentially enhance the therapeutic efficiency of doxorubicin at low doses for ovarian cancer treatment through annexin A2 targeted drug delivery.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Controllable self-assembly of RNA dendrimers.

Ashwani Sharma; Farzin Haque; Fengmei Pi; Lyudmila S. Shlyakhtenko; B. Mark Evers; Peixuan Guo

UNLABELLED We report programmable self-assembly of branched, 3D globular, monodisperse and nanoscale sized dendrimers using RNA as building blocks. The central core and repeating units of the RNA dendrimer are derivatives of the ultrastable three-way junction (3WJ) motif from the bacteriophage phi29 motor pRNA. RNA dendrimers were constructed by step-wise self-assembly of modular 3WJ building blocks initiating with a single 3WJ core (Generation-0) with overhanging sticky end and proceeding in a radial manner in layers up to Generation-4. The final constructs were generated under control without any structural defects in high yield and purity, as demonstrated by gel electrophoresis and AFM imaging. Upon incorporation of folate on the peripheral branches of the RNA dendrimers, the resulting constructs showed high binding and internalization into cancer cells. RNA dendrimers are envisioned to have a major impact in targeting, disease therapy, molecular diagnostics and bioelectronics in the near future. FROM THE CLINICAL EDITOR Dendrimers are gaining importance as a carrier platform for diagnosis and therapeutics. The authors here reported building of their dendrimer molecules using RNA as building blocks. The addition of folate also allowed recognition and subsequent binding to tumor cells. This new construct may prove to be useful in many clinical settings.


ACS Nano | 2015

Construction of RNA–Quantum Dot Chimera for Nanoscale Resistive Biomemory Application

Taek Lee; Ajay Kumar Yagati; Fengmei Pi; Ashwani Sharma; Jeong-Woo Choi; Peixuan Guo

RNA nanotechnology offers advantages to construct thermally and chemically stable nanoparticles with well-defined shape and structure. Here we report the development of an RNA-QD (quantum dot) chimera for resistive biomolecular memory application. Each QD holds two copies of the pRNA three-way junction (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor. The fixed quantity of two RNAs per QD was achieved by immobilizing the pRNA-3WJ with a Sephadex aptamer for resin binding. Two thiolated pRNA-3WJ serve as two feet of the chimera that stand on the gold plate. The RNA nanostructure served as both an insulator and a mediator to provide defined distance between the QD and gold. Immobilization of the chimera nanoparticle was confirmed with scanning tunneling microscopy. As revealed by scanning tunneling spectroscopy, the conjugated pRNA-3WJ-QD chimera exhibited an excellent electrical bistability signal for biomolecular memory function, demonstrating great potential for the development of resistive biomolecular memory and a nano-bio-inspired electronic device for information processing and computing.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Binomial distribution for quantification of protein subunits in biological Nanoassemblies and functional nanomachines

Huaming Fang; Peng Zhang; Lisa P. Huang; Zhengyi Zhao; Fengmei Pi; Carlo D. Montemagno; Peixuan Guo

Living systems produce ordered structures and nanomachines that inspire the development of biomimetic nanodevices such as chips, MEMS, actuators, sensors, sorters, and apparatuses for single-pore DNA sequencing, disease diagnosis, drug or therapeutic RNA delivery. Determination of the copy numbers of subunits that build these machines is challenging due to small size. Here we report a simple mathematical method to determine the stoichiometry, using phi29 DNA-packaging nanomotor as a model to elucidate the application of a formula ∑M=0(Z)((Z)M)p(Z-M)q(M), where p and q are the percentage of wild-type and inactive mutant in the empirical assay; M is the copy numbers of mutant and Z is the stoichiometry in question. Variable ratios of mutants and wild-type were mixed to inhibit motor function. Empirical data were plotted over the theoretical curves to determine the stoichiometry and the value of K, which is the number of mutant needed in each machine to block the function, all based on the condition that wild-type and mutant are equal in binding affinity. Both Z and K from 1-12 were investigated. The data precisely confirmed that phi29 motor contains six copies (Z) of the motor ATPase gp16, and K=1. From the clinical editor: To determine copy numbers of subunits that form nanomachines in living organisms is a daunting task due to the complexities and the inherently small sizes associated with such systems. In this paper, a simple mathematical method is described how to determine the stoichiometry of copies in biomimetic nanodevices, using phi29 DNA-packaging nanomotor as a model.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

New approach to develop ultra-high inhibitory drug using the power function of the stoichiometry of the targeted nanomachine or biocomplex

Dan Shu; Fengmei Pi; Chi Wang; Peng Zhang; Peixuan Guo

AIMS To find methods for potent drug development by targeting to biocomplex with high copy number. METHODS Phi29 DNA packaging motor components with different stoichiometries were used as model to assay virion assembly with Yang Huis Triangle [Formula: see text], where Z = stoichiometry, M = drugged subunits per biocomplex, p and q are the fraction of drugged and undrugged subunits in the population. RESULTS Inhibition efficiency follows a power function. When number of drugged subunits to block the function of the complex K = 1, the uninhibited biocomplex equals q(z), demonstrating the multiplicative effect of stoichiometry on inhibition with stoichiometry 1000 > 6 > 1. Complete inhibition of virus replication was found when Z = 6. CONCLUSION Drug inhibition potency depends on the stoichiometry of the targeted components of the biocomplex or nanomachine. The inhibition effect follows a power function of the stoichiometry of the target biocomplex.


Journal of Virology | 2016

Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism

Fengmei Pi; Zhengyi Zhao; Venkata Chelikani; Kristine E. Yoder; Mamuka Kvaratskhelia; Peixuan Guo

ABSTRACT The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earths rotation on its own axis, while revolving resembles the Earths revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially.


Expert Opinion on Drug Delivery | 2016

Discovery of a new method for potent drug development using power function of stoichiometry of homomeric biocomplexes or biological nanomotors

Fengmei Pi; Mario Vieweger; Zhengyi Zhao; Shaoying Wang; Peixuan Guo

Introduction: Multidrug resistance and the appearance of incurable diseases inspire the quest for potent therapeutics. Areas covered: We review a new methodology in designing potent drugs by targeting multi-subunit homomeric biological motors, machines or complexes with Z > 1 and K = 1, where Z is the stoichiometry of the target, and K is the number of drugged subunits required to block the function of the complex. The condition is similar to a series electrical circuit of Christmas decorations: failure of one light bulb causes the entire lighting system to lose power. In most multi-subunit, homomeric biological systems, a sequential coordination or cooperative action mechanism is utilized, thus K equals 1. Drug inhibition depends on the ratio of drugged to non-drugged complexes. When K = 1, and Z > 1, the inhibition effect follows a power law with respect to Z, leading to enhanced drug potency. The hypothesis that the potency of drug inhibition depends on the stoichiometry of the targeted biological complexes was recently quantified by Yang-Hui’s Triangle (or binomial distribution), and proved using a highly sensitive in vitro phi29 viral DNA packaging system. Examples of targeting homomeric bio-complexes with high stoichiometry for potent drug discovery are discussed. Expert opinion: Biomotors with multiple subunits are widespread in viruses, bacteria and cells, making this approach generally applicable in the development of inhibition drugs with high efficiency.


Methods of Molecular Biology | 2015

Using RNA nanoparticles with thermostable motifs and fluorogenic modules for real-time detection of RNA folding and turnover in prokaryotic and eukaryotic cells.

Hui Zhang; Fengmei Pi; Dan Shu; Mario Vieweger; Peixuan Guo

RNA nanotechnology is an emerging field at the interface of biochemistry and nanomaterials that shows immense promise for applications in nanomedicines, therapeutics and nanotechnology. Noncoding RNAs, such as siRNA, miRNA, ribozymes, and riboswitches, play important roles in the regulation of cellular processes. They carry out highly specific functions on a compact and efficient footprint. The properties of specificity and small size make them excellent modules in the construction of multifaceted RNA nanoparticles for targeted delivery and therapy. Biological activity of RNA molecules, however, relies on their proper folding. Therefore their thermodynamic and biochemical stability in the cellular environment is critical. Consequently, it is essential to assess global fold and intracellular lifetime of multifaceted RNA nanoparticles to optimize their therapeutic effectiveness. Here, we describe a method to express and assemble stable RNA nanoparticles in cells, and to assess the folding and turnover rate of RNA nanoparticles in vitro as well as in vivo in real time using a thermostable core motif derived from pRNA of bacteriophage Phi29 DNA packaging motor and fluorogenic RNA modules.

Collaboration


Dive into the Fengmei Pi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Shu

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Hui Li

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Zhang

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge