Fengxia Tian
Shandong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fengxia Tian.
Journal of Experimental Botany | 2013
Fengxia Tian; Jiangfeng Gong; Jin Zhang; Meng Zhang; G. P. Wang; Aixiu Li; Wei Wang
A wheat stay-green mutant, tasg1, was previously generated via mutation breeding of HS2, a common wheat cultivar (Triticum aestivum L.). Compared with wild-type (WT) plants, tasg1 exhibited delayed senescence indicated by the slower degradation of chlorophyll. In this study, the stability of proteins in thylakoid membranes was evaluated in tasg1 under drought stress compared with WT plants in the field as well as in seedlings in the laboratory. Drought stress was imposed by controlling irrigation and sheltering the plants from rain in the field, and by polyethylene glycol (PEG)-6000 in the laboratory. The results indicated that tasg1 plants could maintain higher Hill activity, actual efficiency (ΦPSII), maximal photochemical efficiency of PSII (Fv/Fm), and Ca2+-ATPase and Mg2+-ATPase activities than the WT plants under drought stress. Furthermore, the abundance of some polypeptides in thylakoid membranes of tasg1 was greater than that in the WT under drought stress. Expression levels of TaLhcb4 and TaLhcb6 were higher in tasg1 compared with the WT. Under drought stress, the accumulation of superoxide radical (O2·–) and hydrogen peroxide (H2O2) was lower in tasg1 compared with the WT not only at the senescence stage but also at the seedling stages. These results suggest greater functional stability of thylakoid membrane proteins in tasg1 compared with the WT, and the higher antioxidant competence of tasg1 may play an important role in the enhanced drought tolerance of tasg1.
Plant Cell Reports | 2012
Zhen Hui; Fengxia Tian; G. P. Wang; Gui-Ping Wang; Wei Wang
Wheat, which is the most important food crop worldwide, is a cereal that presents considerable potential for increased yield. A new wheat (Triticum aestivum L.) mutant tasg1 with delayed leaf senescence was constructed using ethyl methane sulfonate as a mutagen. Natural senescence in tasg1 was distinctly delayed in the field, as indicated by the slower progression of chlorophyll degradation, net photosynthetic rate than its wild type. Further, the malondialdehyde and the hydrogen peroxide content was lower and antioxidative enzyme activity higher in tasg1 than those in its wild type during both natural senescence and methyl viologen-induced oxidative stress. The results suggest that tasg1 is a functional stay-green wheat mutant with the Type B (in which senescence initiates on schedule, but progresses at a rate lower than that in the respective WTs) or Type A (in which senescence initiates late but proceeds at a normal rate) and B combination and that the competence of the antioxidant defense system is one of the most important mechanisms underlying the expression of the stay-green phenotype.
Biologia Plantarum | 2012
Fengxia Tian; Jiangfeng Gong; G. P. Wang; Gui-Ping Wang; Z. Y. Fan; Wei Wang
We investigated the drought resistance of a wheat (Triticum aestivum L.) stay-green mutant tasg1 and its wild-type (WT) in field experiments conducted for two years. Drought stress was imposed by controlling irrigation and sheltering the plants from rain. Compared with the WT, tasg1 exhibited a distinct delayed senescence under both normal and drought stress conditions, as indicated by slower degradation of chlorophyll and decrease in net photosynthetic rate than in WT. At the same time, tasg1 mutants maintained more integrated chloroplasts and thylakoid ultrastructure than did WT plants under drought stress. Lower malondialdehyde content and higher antioxidative enzyme activities in tasg1, compared to WT, may be involved in the stay-green phenotype and drought resistance of tasg1.
PLOS ONE | 2015
Fengxia Tian; Tan Wang; Yuli Xie; Jin Zhang; Jianjun Hu
Background In plants, 14-3-3 proteins are encoded by a large multigene family and are involved in signaling pathways to regulate plant development and protection from stress. Although twelve Populus 14-3-3s were identified based on the Populus trichocarpa genome V1.1 in a previous study, no systematic analysis including genome organization, gene structure, duplication relationship, evolutionary analysis and expression compendium has been conducted in Populus based on the latest P. trichocarpa genome V3.0. Principal Findings Here, a comprehensive analysis of Populus 14-3-3 family is presented. Two new 14-3-3 genes were identified based on the latest P. trichocarpa genome. In P. trichocarpa, fourteen 14-3-3 genes were grouped into ε and non-ε group. Exon-intron organizations of Populus 14-3-3s are highly conserved within the same group. Genomic organization analysis indicated that purifying selection plays a pivotal role in the retention and maintenance of Populus 14-3-3 family. Protein conformational analysis indicated that Populus 14-3-3 consists of a bundle of nine α-helices (α1-α9); the first four are essential for formation of the dimer, while α3, α5, α7, and α9 form a conserved peptide-binding groove. In addition, α1, α3, α5, α7, and α9 were evolving at a lower rate, while α2, α4, and α6 were evolving at a relatively faster rate. Microarray analyses showed that most Populus 14-3-3s are differentially expressed across tissues and upon exposure to various stresses. Conclusions The gene structures and their coding protein structures of Populus 14-3-3s are highly conserved among group members, suggesting that members of the same group might also have conserved functions. Microarray and qRT-PCR analyses showed that most Populus 14-3-3s were differentially expressed in various tissues and were induced by various stresses. Our investigation provided a better understanding of the complexity of the 14-3-3 gene family in poplars.
Plant Science | 2014
Fengxia Tian; Jiangfeng Gong; Jin Zhang; Yanan Feng; G. P. Wang; Qifang Guo; Wei Wang
The ubiquitin/26S proteasome system (Ub/26S) is implicated in abiotic stress responses in plants. In this paper, transgenic tobacco plants overexpressing Ta-Ub2 from wheat were used to study the functions of Ub in the improvement of photosynthesis under high temperature (45°C) stress. We observed higher levels of Ub conjugates in transgenic plants under high temperature stress conditions compared to wild type (WT) as a result of the constitutive overexpression of Ta-Ub2, suggesting increased protein degradation by the 26S proteasome system under high temperature stress. Overexpressing Ub increased the photosynthetic rate (Pn) of transgenic tobacco plants, consistent with the improved ATPase activity in the thylakoid membrane and enhanced efficiency of PSII photochemistry. The higher D1 protein levels following high temperature stress in transgenic plants than WT were also observed. These findings imply that Ub may be involved in tolerance of photosynthesis to high temperature stress in plants. Compared with WT, the transgenic plants showed lower protein carbonylation and malondialdehyde (MDA) levels, less reactive oxygen species (ROS) accumulation, but higher antioxidant enzyme activity under high temperature stress. These findings suggest that the improved antioxidant capacity of transgenic plants may be one of the most important mechanisms underlying Ub-regulated high temperature tolerance.
PLOS ONE | 2015
Fengxia Tian; Jian-Lei Zang; Tan Wang; Yuli Xie; Jin Zhang; Jianjun Hu
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.
Russian Journal of Plant Physiology | 2014
Y. L. Wu; Qifang Guo; Y. Luo; Fengxia Tian; Wei Wang
We investigated various physiological characteristics of two wheat (Triticum aestivum L.) cultivars differing in drought tolerance, i.e., Shannong16 (a drought-tolerant cultivar) and Weimai8 (a high-yield wheat cultivar under well-watered conditions), under field drought conditions. The experiments were conducted over a two-year period. Drought stress (DS) was imposed by controlling irrigation and sheltering the plants from rain. Compared with Weimai8, Shannong16 exhibited the better water balance, the higher osmotic adjustment, the slower degradation of chlorophyll, and the higher net photosynthetic rate under drought-stress conditions. At the same time, we observed that Shannong16 maintained more integrated chloroplast and thylakoid ultrastructure in flag leaves than Weimai8 under field drought stress. The different levels of antioxidant competence, indicated by MDA content, antioxidant enzyme activities, and the level of superoxide radicals observed in the two wheat cultivars may be involved in the different levels of drought resistance of these cultivars.
Scientific Reports | 2017
Fengxia Tian; Ermei Chang; Yu Li; Pei Sun; Jianjun Hu; Jin Zhang
The Na+/H+ antiporters (NHXs) are secondary ion transporters to exchange H+ and transfer the Na+ or K+ across membrane, they play crucial roles during plant development and stress responses. To gain insight into the functional divergence of NHX genes in poplar, eight PtNHX were identified from Populus trichocarpa genome. PtNHXs containing 10 transmembrane helices (TMH) and a hydrophilic C-terminal domain, the TMH compose a hollow cylinder to provide the channel for Na+ and H+ transport. The expression patterns and cis-acting elements showed that all the PtNHXs were response to single or multiple stresses including drought, heat, cold, salinity, MV, and ABA. Both the co-expression network and protein-protein interaction network of PtNHXs implying their functional divergence. Interestingly, although PtNHX7 and PtNHX8 were generated by whole genome duplication event, they showed significant differences in expression pattern, protein structure, co-expressed genes, and interacted proteins. Only PtNHX7 interact with CBL and CIPK, indicating PtNHX7 is the primary NHX involved in CBL-CIPK pathway during salt stress responses. Natural variation analysis based on 549 P. trichocarpa individuals indicated the frequency of SNPs in PtNHX7 was significantly higher than other PtNHXs. Our findings provide new insights into the functional divergence of NHX genes in poplar.
PLOS ONE | 2016
Wenqiang Wang; Qunqun Hao; Fengxia Tian; Qinxue Li; Wei Wang
A wheat stay-green mutant, tasg1, was observed to exhibit significantly delayed senescence in the late developmental stage. The photosynthetic capacity of the flag leaf was greater in tasg1 than in wild type (WT) plants. In addition, the grain volume of tasg1 was significantly higher than that of WT at the early filling stage. The content of various cytokinins (CKs) in the grain was significantly higher in tasg1 than in WT and was accompanied by an upregulated expression of some cell cycle-related genes. Examination of the metabolism of soluble sugars in tasg1 and WT revealed that the concentrations of glucose (Glu), fructose (Fru), and sucrose (Suc) were higher in the flag leaves and grains of tasg1 than in WT plants. The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SuSy), and cell wall invertase (CW-invertase) were higher in tasg1, suggesting an altered metabolism and transport of soluble sugars. Furthermore, when tasg1 was treated with the CK inhibitor lovastatin, the activity of invertase was inhibited and was associated with premature senescence phenotype. However, the activity of invertase was partially recovered in tasg1 when treated with 6-benzylaminopurine (BAP). The trend of change in the concentrations of Glu, Fru, and Suc was similar to that of invertase. Our results suggest that CKs might regulate the stay-green phenotype of tasg1 by regulating the invertase activity involved in Suc remobilization.
Biologia Plantarum | 2015
Fengxia Tian; Meng Zhang; Xin Wang; Yanhui Chen; Wenqiang Wang
A wheat stay-green mutant, named tasg1, was generated using the mutagen ethyl methane sulphonate applied to wheat (Triticum aestivum L.) cv. HS2. A drought stress was imposed by controlling irrigation and sheltering plants from rain. The antioxidant defence was characterized in the flag leaves of the tasg1 and wild-type (WT). Compared with WT, tasg1 had higher reduced ascorbate/oxidized ascorbate ratio, reduced glutathione/oxidized glutathione ratio, and antioxidant enzyme activities during senescence under both normal and drought stress conditions. The DHAR gene expression remained higher in tasg1 than in WT during the drought stress and tasg1 had a higher antioxidant defence competence which may contribute towards the delayed leaf senescence. The different transcriptional responses of some wheat senescence-associated genes to the drought stress between tasg1 and WT were observed. These results suggest that the competent antioxidative capacity might play an important role in the enhanced drought tolerance in tasg1.