Fengyan Jin
Jilin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fengyan Jin.
Annals of Hematology | 2015
Gang An; Xiaoqi Qin; Chirag Acharya; Yan Xu; Shuhui Deng; Lihui Shi; Meirong Zang; Weiwei Sui; Shuhua Yi; Zengjun Li; Mu Hao; Xiaoyan Feng; Fengyan Jin; Dehui Zou; Junyuan Qi; Yaozhong Zhao; Yu-Tzu Tai; Jianxing Wang; Lugui Qiu
The common features shared by primary plasma cell leukemia (pPCL) and multiple myeloma (MM) with circulating plasma cells (CPCs) are peripheral blood invasion and expansion of plasma cells independent of the protective bone marrow (BM) microenvironment niche. However, few studies have addressed the relationship between pPCL and MM with CPCs. Here, we quantitated the number CPCs by conventional morphology in 767 patients with newly diagnosed MM; their clinic features were compared with those of 33 pPCL cases. When the presence of CPCs was defined as more than 2xa0% plasma cells per 100 nucleated cells on Wright–Giemsa stained peripheral blood smears, the incidence of MM with CPCs was 14.1xa0% in newly diagnosed MM. Patients with CPCs shared many clinical features with pPCL, especially clinical parameters related to tumor burden. However, no commonalities were found in immunophenotyping and cytogenetics. The prognosis of pPCL was poor, with a median progression free survival (PFS) of 12xa0months and an overall survival (OS) of 15xa0months. MM patients with CPCs had a clearly inferior PFS and OS as compared with the control cohort. Most interestingly, although the CPCs were not high enough to meet the diagnostic criteria for pPCL, the survival of MM patients with CPCs was comparable with that of pPCL, with a median PFS of 17xa0months and an OS of 25xa0months.
Angiogenesis | 2018
Fengyan Jin; Nina Hagemann; Li Sun; Jiang Wu; Thorsten R. Doeppner; Yun Dai; Dirk M. Hermann
High-density lipoprotein (HDL) has previously been shown to promote angiogenesis. However, the mechanisms by which HDL enhances the formation of blood vessels remain to be defined. To address this, the effects of HDL on the proliferation, transwell migration and tube formation of human umbilical vein endothelial cells were investigated. By examining the abundance and phosphorylation (i.e., activation) of the vascular endothelial growth factor receptor VEGFR2 and modulating the activity of the sphingosine-1 phosphate receptors S1P1–3 and VEGFR2, we characterized mechanisms controlling angiogenic responses in response to HDL exposure. Here, we report that HDL dose-dependently increased endothelial proliferation, migration and tube formation. These events were in association with increased VEGFR2 abundance and rapid VEGFR2 phosphorylation at Tyr1054/Tyr1059 and Tyr1175 residues in response to HDL. Blockade of VEGFR2 activation by the VEGFR2 inhibitor SU1498 markedly abrogated the pro-angiogenic capacity of HDL. Moreover, the S1P3 inhibitor suramin prevented VEGFR2 expression and abolished endothelial migration and tube formation, while the S1P1 agonist CYM-5442 and the S1P2 inhibitor JTE-013 had no effect. Last, the role of S1P3 was further confirmed in regulation of S1P-induced endothelial proliferation, migration and tube formation via up-regulation and activation of VEGFR2. Together, these findings argue that HDL promotes angiogenesis via S1P3-dependent up-regulation and activation of VEGFR2 and also suggest that the S1P–S1P3–VEGFR2 signaling cascades as a novel target for HDL-modulating therapy implicated in vascular remodeling and functional recovery in atherosclerotic diseases such as myocardial infarction and ischemic stroke.
International Journal of Oncology | 2018
Chen Shi; Yongjun Guan; Liang Zeng; Guizhu Liu; Yinghong Zhu; He Xu; Yichen Lu; Jiabin Liu; Jiaojiao Guo; Xiangling Feng; Xinying Zhao; Weihong Jiang; Guancheng Li; Guiyuan Li; Yun Dai; Fengyan Jin; Wei Li; Wen Zhou
Resistance to radiotherapy and chemotherapy currently represents one of the major reasons for therapeutic failure in nasopharyngeal carcinoma (NPC). However, the mechanisms underlying resistance to chemotherapy in NPC remain unclear. In this study, cell counting assay, cell cycle assay and senescence associated β-galactosidase activity were performed to evaluate cell growth, proliferation and senescence, respectively. We found that the aberrant expression of cyclooxygenase-2 (COX-2) was associated with a poor outcome and recurrance in patients with NPC. In NPC cells, COX-2 overexpression increased cell proliferation, inhibited cellular senescence and resulted in chemoresistance, while the knockdown of COX-2 reduced cell proliferation, promoted cellular senescence and overcame chemoresistance. Furthermore, fibroblasts from COX-2 knockout mice exhibited cellular senescence, particularly when treated with chemotherapeutic agents. Mechanistically, COX-2 interacted with p53 protein and inhibited cellular senescence, which resulted in chemotherapeutic resistance. On the whole, these findings indicate that COX-2 may play a critical role in chemotherapeutic resistance in NPC via the inhibition of chemotherapy-induced senescence via the inactivation of p53. This study provides experimental evidence for the preclinical value of increasing chemotherapy-induced senescence by targeting COX-2 as an effective antitumor treatment in patients with recurrent NPC.
Cancer Letters | 2015
Meirong Zang; Zengjun Li; Lanting Liu; Fei Li; Xin Li; Yun Dai; Wei Li; Ulrike Kuckelkorn; Thorsten R. Doeppner; Dirk M. Hermann; Wen Zhou; Lugui Qiu; Fengyan Jin
Introduction of bortezomib, the first generation of proteasome inhibitor, has significantly improved the median overall survival of patients with multiple myeloma (MM). However, the dose-limiting adverse events and acquired drug resistance limit its long-term usage. Here, we report in vitro and in vivo anti-MM activity of the irreversible proteasome inhibitor BSc2118. BSc2118 inhibited the chymotrypsin-like (CT-L) proteasome activity, accompanied by accumulation of ubiquitinated proteins. BSc2118 suppressed tumor cell growth through induction of G2/M phase arrest and induced apoptosis via activation of the apoptotic signaling cascade, in association with up-regulation of p53 and p21. Importantly, BSc2118 was active in vitro against MM cells acquired bortezomib resistance. Of note, BSc2118 also displayed a novel anti-angiogenesis activity both in vitro and in vivo. Lastly, BSc2118 exhibited a broader safety dose range and higher anti-tumor efficacy in vivo in a human MM xenograft mouse model, compared to bortezomib. Together, these findings indicate the in vitro and in vivo anti-MM activities of BSc2118 through induction of cell cycle arrest and apoptosis, as well as inhibition of tumor angiogenesis. They also suggest that BSc2118 might, at least in vitro, partially overcome acquired bortezomib resistance, likely associated with inhibition of autophagy.
Journal of Cellular Biochemistry | 2018
He Xu; Liang Zeng; Yongjun Guan; Xiangling Feng; Yinghong Zhu; Yichen Lu; Chen Shi; Shilian Chen; Jiliang Xia; Jiaojiao Guo; Chunmei Kuang; Wei Li; Fengyan Jin; Wen Zhou
Nasopharyngeal carcinoma (NPC) is a common malignant tumor in southern China and Southeast Asia, but the molecular mechanism of its pathogenesis is poorly understood. Our previous work demonstrated that NEK2 is overexpressed in multiple cancers. However, how NEK2 involves in NPC development remains to be elucidated. In this study, we firstly identified NEK2, located at +1q32‐q33, a late event in NPC pathogenesis, overexpressed in the stage III‐IV and paired sequential recurrent patients with NPC by immunohistochemistry. Furthermore, Kaplan‐Meier analysis indicated high NEK2 conferred an inferior overall survival in NPC. In addition, cisplatin experiments with cell counting kit‐8, colony formation, and a xenograft mice model of NPC demonstrated that NEK2 contributed to proliferation and cisplatin resistance in vitro and in vivo. On the contrary, downregulation of NEK2 by short hairpin RNA inhibited NPC cell growth and increased the sensitivity of cisplatin treatment in vitro. Thus, increased expression of NEK2 protein could not be predicted for poor survival but used as a novel biomarker for recurrence of NPC. Targeting NEK2 has the potential to eradicate the cisplatin‐based chemotherapy resistant NPC cells.
Frontiers in Cellular Neuroscience | 2018
Thorsten R. Doeppner; Bozena Zechmeister; Britta Kaltwasser; Fengyan Jin; Xuan Zheng; Arshad Majid; Vivek Venkataramani; Mathias Bähr; Dirk M. Hermann
Ischemic conditioning is defined as a transient and subcritical period of ischemia integrated in an experimental paradigm that involves a stimulus of injurious ischemia, activating endogenous tissue repair mechanisms that lead to cellular protection under pathological conditions like stroke. Whereas ischemic pre-conditioning is irrelevant for stroke treatment, ischemic post-conditioning, and especially non-invasive remote ischemic post-conditioning (rPostC) is an innovative and potential strategy for stroke treatment. Although rPostC has been shown to induce neuroprotection in stroke models before, resulting in some clinical trials on the way, fundamental questions with regard to its therapeutic time frame and its underlying mechanisms remain elusive. Hence, we herein used a model of non-invasive rPostC of hind limbs after cerebral ischemia in male C57BL6 mice, studying the optimal timing for the application of rPostC and its underlying mechanisms for up to 3 months. Mice undergoing rPostC underwent three different paradigms, starting with the first cycle of rPostC 12 h, 24 h, or 5 days after stroke induction, which is a very delayed time point of rPostC that has not been studied elsewhere. rPostC as applied within 24 h post-stroke induces reduction of infarct volume on day three. On the contrary, very delayed rPostC does not yield reduction of infarct volume on day seven when first applied on day five, albeit long-term brain injury is significantly reduced. Likewise, very delayed rPostC yields sustained neurological recovery, whereas early rPostC (i.e., <24 h) results in transient neuroprotection only. The latter is mediated via heat shock protein 70 that is a well-known signaling protein involved in the pathophysiological cellular cascade of cerebral ischemia, leading to decreased proteasomal activity and decreased post-stroke inflammation. Very delayed rPostC on day five, however, induces a pleiotropic effect, among which a stimulation of angioneurogenesis, a modulation of the ischemic extracellular milieu, and a reversal of the stroke-induced immunosuppression occur. As such, very delayed rPostC appears to be an attractive tool for future adjuvant stroke treatment that deserves further preclinical attention before large clinical trials are in order, which so far have predominantly focused on early rPostC only.
Cancer Science | 2018
Yichen Lu; Ya Wang; He Xu; Chen Shi; Fengyan Jin; Wei Li
Autophagy plays an important role in multiple myeloma (MM) for homeostasis, survival and drug resistance, but which genes participate in this process is unclear. We identified several cytoskeleton genes upregulated in MM patients by gene expression profiling (GEP) datasets; in particular, patients with high profilin 1 (PFN1) expression had poor prognosis in MM. In vitro, overexpressed PFN1 promotes proliferation and bortezomib (BTZ) resistance in MM cells. Further study indicated overexpression of PFN1 significantly promoted the process of autophagy and induced BTZ resistance in MM. Otherwise, knockdown of PFN1 blocked autophagy and sensitized MM to BTZ. Co‐immunoprecipitation in MM cells indicated that PFN1 could bind Beclin1 complex and promote the initiation of autophagy. Inhibition of autophagy by blocking the formation of Beclin1 complex could reverse the phenotype of BTZ resistance in MM. Our findings suggested that PFN1 could promote autophagy through taking part in Beclin1 complex and contribute to BTZ resistance, which may become a novel molecular target in the therapy of MM.
Cancer Medicine | 2018
Chuan Wu; Ting Yang; Yingmin Liu; Yicheng Lu; Yanping Yang; Xiaobo Liu; Xuelian Liu; Long Ye; Yue Sun; Xue Wang; Qingchao Li; Peiyu Yang; Xiaoyuan Yu; Sujun Gao; Shaji Kumar; Fengyan Jin; Yun Dai; Wei Li
1q21 gain is a common cytogenetic abnormality featuring high‐risk multiple myeloma (HRMM). However, the molecular mechanism underlying the adverse prognostic effect of 1q21 gain remains largely unclear. Here, we report that ARNT/HIF‐1β, a 1q21 gene, is highly expressed in HRMM and induced by microenvironmental hypoxia, which confers drug resistance and correlates with inferior outcome. Analysis of the gene expression profile database revealed that ARNT expression was upregulated in MM and increased with disease progression or in HRMM subtypes (particularly 1q21 gain), while correlated to shorter overall survival. In a cohort of 40 MM patients, qPCR further validated that ARNT expression was higher in MM patients than normal donors. MM cells carrying 1q21 gain or acquired drug resistance displayed a robust increase in HIF‐1β protein level. Hypoxia induced HIF‐1β expression via a NF‐κB‐dependent process. Notably, HIF‐1β overexpression impaired bortezomib sensitivity, whereas shRNA knockdown of ARNT reversed hypoxia‐mediated drug resistance. Together, these findings suggest that ARNT/HIF‐1β might represent a novel biomarker for risk stratification and prognosis of HRMM patients, as well as a potential therapeutic target for overcoming 1q21 gain‐ or microenvironment‐mediated and acquired drug resistance in MM.
Oncotarget | 2015
Fei Li; Yan Xu; Ping Deng; Ye Yang; Weiwei Sui; Fengyan Jin; Mu Hao; Zengjun Li; Meirong Zang; Dehui Zhou; Zhimin Gu; Kun Ru; Jianxiang Wang; Tao Cheng; Lugui Qiu
Blood | 2015
Meirong Zang; Fengyan Jin; Lanting Liu; Gang An; Xiaoqi Qin; Xiaoyan Feng; Yan Xu; Mu Hao; Wen Zhou; Lugui Qiu