Fengyun Dong
Shandong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fengyun Dong.
Cancer Biology & Therapy | 2014
Fengyun Dong; Xia Zhou; Changsheng Li; Suhua Yan; Xianming Deng; Zhiqun Cao; Liqun Li; Bo Tang; Thaddeus D. Allen; Ju Liu
The anti-malarial agent dihydroartemisinin (DHA) has strong anti-angiogenic activity. This study aimed to investigate the molecular mechanism underlying this effect of DHA on angiogenesis. We found that DHA shows a dose-dependent inhibition of proliferation and migration of in HUVECs. DHA specifically down-regulates the mRNA and protein expression of VEGFR2 in endothelial cells. Treatment with DHA increases IκB-α protein and blocks nuclear translocation of NF-κB p65. In addition, DHA directly regulates VEGFR2 promoter activity through p65 binding motif, and decreases the binding activity of p65 and VEGFR2 promoter, suggesting defective NF-κB signaling may underlie the observed effects of DHA on VEGFR2 expression. In the presence of the NF-κB inhibitor PDTC, DHA could not further repress VEGFR2. Co-treatment with PDTC and DHA produced minimal changes compared to the effects of either drug alone in in vitro angiogenesis assays. Similar findings were found in vivo through a mouse retinal neovascularization model examining the effects of PDTC and DHA. Our data suggested that DHA inhibits angiogenesis largely through repression of the NF-κB pathway. DHA is well tolerated, and therefore may be an ideal candidate to use clinically as an angiogenesis inhibitor for cancer treatment.
International Journal of Molecular Medicine | 2015
Fengyun Dong; Hu Tian; Suhua Yan; Liqun Li; Xiaofeng Dong; Fuhai Wang; Jie Li; Changsheng Li; Zhiqun Cao; Xiaochun Liu; Ju Liu
Disrupting tumor angiogenesis serves as an important strategy for cancer therapy. Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has exhibited potent anti-angiogenic activity. However, the molecular mechanisms underlying this effect have not been fully understood. The present study aimed to investigate the role of DHA on endothelial cell proliferation, the essential process in angiogenesis. Human umbilical vein endothelial cells (HUVECs) treated with DHA were examined for proliferation, apoptosis and activation of the extracellular signal-regulated kinase (ERK) signaling pathway. Proliferation of HUVECs was inhibited by 20 µM DHA without induction of apoptosis. DHA also reduced the phosphorylation of ERK1/2, and downregulated the mRNA and protein expression of ERK1/2 in HUVECs. In addition, DHA suppressed the transcription and protein expression of ERK1/2 downstream effectors c-Fos and c-Myc. Electrical cell-substrate impedance sensing real-time analysis demonstrated that ERK signaling inhibitor PD98059 comprises the anti-proliferative effects of DHA. Thus, DHA inhibits endothelial cell proliferation by suppressing the ERK signaling pathway. The present study strengthened the potential of DHA as an angiogenesis inhibitor for cancer treatment.
Biochemical and Biophysical Research Communications | 2014
Fengyun Dong; Fang Guo; Liqun Li; Ling Guo; Yinglong Hou; Enkui Hao; Suhua Yan; Thaddeus D. Allen; Ju Liu
The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl2) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl2 induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24h. This effect of CdCl2 was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl2-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.
Experimental and Therapeutic Medicine | 2014
Ling Guo; Fengyun Dong; Yinglong Hou; Weidong Cai; Xia Zhou; Ai‑Ling Huang; Min Yang; Thaddeus D. Allen; Ju Liu
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has been demonstrated to possess a strong antiangiogenic activity. However, the molecular mechanisms underlying this effect remain unclear. Endothelial cell (EC) migration is an essential component of angiogenesis, and the p38 mitogen-activated protein kinase (MAPK) signaling pathway plays a key role in the regulation of migration induced by vascular endothelial growth factor (VEGF). The aim of the present study was to investigate the effects of DHA on EC migration and the p38 MAPK signaling pathway. Human umbilical vein ECs (HUVECs) were treated with DHA and VEGF-induced migration was analyzed. The activation of p38 MAPK was detected by western blot analysis, and the migration assays were performed with a p38-specific inhibitor, SB203850. It was revealed that 20 μM DHA significantly reduced EC migration in the transwell migration assay, wound healing assay and electrical cell-substrate impedance sensing real-time analysis. However, DHA did not affect p38 MAPK phosphorylation or expression. In the absence or presence of SB203850, DHA induced a similar proportional reduction of EC migration in the three migration assays. Therefore, the present study demonstrated that DHA inhibits VEGF-induced EC migration via a p38 MAPK-independent pathway.
Journal of Applied Toxicology | 2016
Liqun Li; Fengyun Dong; Dongmei Xu; Linna Du; Suhua Yan; Hesheng Hu; Corrinne G. Lobe; Fan Yi; Carolyn M. Kapron; Ju Liu
The kidney is the principal organ targeted by exposure to cadmium (Cd), a well‐known toxic metal. Even at a low level, Cd damages glomerular filtration. However, little is known about the effects of Cd on the glomerular endothelium, which performs the filtration function and directly interacts with Cd in blood plasma. In this study, we cultured human renal glomerular endothelial cells (HRGECs) in the presence of serum with treatment of a short term (1 h) and low concentration (1 μm) of Cd, which mimics the pattern of glomerular endothelium exposure to Cd in vivo. We found that this short‐term, low‐dose Cd exposure does not induce cytotoxicity, but increases permeability in HRGECs monolayers and redistributes adherens junction proteins vascular endothelial‐cadherin and β‐catenin. Though short‐term, low‐dose Cd exposure activates all three major mitogen activated protein kinases, only the inhibitor of p38 mitogen activated protein kinase partially prevents Cd‐induced hyperpermeability in HRGECs. Our data indicate that the presence of Cd in blood circulation might directly disrupt the glomerular endothelial cell barrier and contribute to the development of clinical symptoms of glomerular diseases. Copyright
Molecular Medicine Reports | 2015
Linna Du; Fengyun Dong; Ling Guo; Yinglong Hou; Fan Yi; Ju Liu; Dongmei Xu
The renal glomerular capillary endothelium is part of the glomerular filtration barrier and is involved in acute and chronic inflammation of the glomerulus. Glomerular endothelial cells are a unique type of microvascular cell, which remain to be fully characterized. The aim of the present study was to examine the permeability of glomerular endothelial cells and their responses to interleukin (IL)‑1β, a pro‑inflammatory cytokine. Human glomerular endothelial cell (HRGEC) and human umbilical vein endothelial cell (HUVEC) monolayers were examined using a Transwell permeability assay, transendothelial electrical resistance (TEER) and by determining the expression of the adhesion molecule, vascular endothelial (VE)‑cadherin, in the absence or presence of 10 ng/ml IL‑1β. Compared with the HUVECs, the HRGECs demonstrated higher permeability, lower TEER and reduced expression of VE‑cadherin. IL‑1β induced an increase in the permeability and a decrease in the TEER of the HRGECs, however, to a lesser extent compared with the HUVECs. Following IL‑1β treatment, the expression of VE‑cadherin was increased in the HRGECs and decreased in the HUVECs. These results suggested that HRGECs have distinct biological properties and specific gene expression features in response to IL‑1β.
International Journal of Molecular Medicine | 2014
Ju Liu; Fengyun Dong; James Jeong; Takahiro Masuda; Corrinne G. Lobe
Endothelial-mesenchymal transition (EndoMT) is a process in which endothelial cells lose their cell-type-specific characteristics and gain a mesenchymal cell phenotype. The Notch signaling pathway is crucial in the regulation of EndoMT; however, its roles have not been fully studied in vivo. In a previous study, we reported the generation of transgenic mice with a floxed β-geo/stop signal between a CMV promoter and the constitutively active intracellular domain of Notch1 (IC-Notch1) linked with a human placental alkaline phosphatase (hPLAP) reporter (ZAP-IC-Notch1). In this study, we examined the results of activating IC-Notch1 in endothelial cells. ZAP-IC-Notch1 mice were crossed with Tie2-Cre mice to activate IC-Notch1 expression specifically in endothelial cells. The ZAP-IC-Notch1/Tie2-Cre double transgenic embryos died at E9.5–10.5 with disruption of vasculature and enlargement of myocardium. VE-cadherin expression was decreased and EphrinB2 expression was increased in the heart of these embryos. Mesenchymal cell marker α-smooth muscle actin (SMA) was expressed in IC-Notch1-expressing endothelial cells. In addition, upregulation of Snail, the key effector in mediating EndoMT, was identified in the cardiac cushion of the double transgenic murine embryo heart. The results of the present study demonstrate that constitutively active Notch signaling promotes EndoMT and differentially regulates endothelial/mesenchymal cell markers during cardiac development.
International Journal of Molecular Medicine | 2016
Hongyan Zhang; Liqun Li; Yifan Wang; Fengyun Dong; Xiaocui Chen; Fuhong Liu; Dongmei Xu; Fan Yi; Carolyn M. Kapron; Ju Liu
The kidney is one of the primary organs targeted by cadmium (Cd), a widely distributed environmental pollutant. The glomerular endothelium is the major component of the glomerular filtration barrier. However, the effects of Cd on glomerular endothelial cells remain largely unknown. For this purpose, we aimed to determine the effects of low dose Cd on the survival of human renal glomerular endothelial cells (HRGECs). Cultured HRGECs were exposed to 4 µM cadmium chloride (CdCl2) and examined at different time-points. We found that Cd activates the nuclear factor-κB (NF-κB) pathway without inducing the apoptosis of HRGECs. Pre-treating the cells with pyrrolidine dithiocarbamate (PDTC), a potent NF-κB inhibitor, prior to Cd exposure triggered extensive cell death (73.5%). In addition, Cd activates the c-Jun N-terminal kinase (JNK) pathway, and inhibition of the NF-κB pathway significantly elevates Cd-induced JNK phosphorylation in HRGECs (p<0.01). The combination treatment of PDTC and SP600125, a JNK pathway inhibitor, increased the survival of Cd-stimulated HRGECs compared with those cells treated with PDTC alone (p<0.05). Taken together, these findings demonstrate that the NF-κB pathway plays an essential role in maintaining the survival of Cd-exposed HRGECs.
International Journal of Environmental Research and Public Health | 2015
Fuhong Liu; Bei Wang; Liqun Li; Fengyun Dong; Xiaocui Chen; Yan Li; Xiuzhen Dong; Youichiro Wada; Carolyn M. Kapron; Ju Liu
Cadmium (Cd) is a heavy metal and environmental toxin. Exposure to Cd has been associated with a variety of human cancers. In this study, we performed in vitro assays to examine the effects of cadmium chloride (CdCl2) on A549 cells, a human lung adenocarcinoma cell line. Cd does not affect proliferation, migration, or apoptosis of A549 cells at concentrations of 0.1–10 μM. At 0.5 and 1 μM, Cd increases the expression of vascular endothelial growth factor (VEGF) (p < 0.05, p < 0.01, respectively), but not basic fibroblast growth factor (b-FGF) in A549 cells. The conditioned media were collected from the A549 cells treated with 1 μM Cd and were co-cultured with human umbilical vein endothelial cells (HUVECs). Upon treatment with the conditioned media, the proliferation and migration of HUVECs significantly increased (p < 0.01, p < 0.05, respectively), while apoptosis remained unchanged. In addition, 1 μM Cd increases the level of hypoxia inducible factor 1-α (HIF1-α), which is a positive regulator of VEGF expression. Although low-dose Cd does not directly affect the growth of lung adenocarcinoma cells, it might facilitate the development of tumors through its pro-angiogenic effects.
Oncology Letters | 2016
Jiao Zhang; Ling Guo; Xia Zhou; Fengyun Dong; Liqun Li; Zuowang Cheng; Yinghua Xu; Jiyong Liang; Qi Xie; Ju Liu
Angiogenesis is required for the growth and metastasis of solid tumors. The anti-malarial agent dihydroartemisinin (DHA) demonstrates potent anti-angiogenic activity, but the underlying molecular mechanisms are not yet fully understood. During the process of angiogenesis, endothelial cells migrating from existing capillaries may undergo programmed cell death after detaching from the extracellular matrix, a process that is defined as anchorage-dependent apoptosis or anoikis. In the present study, DHA-induced cell death was compared in human umbilical vein endothelial cells (HUVECs) cultured in suspension and attached to culture plates. In suspended HUVECs, the cell viability was decreased and apoptosis was increased with the treatment of 50 µM DHA for 5 h, while the same treatment did not affect the attached HUVECs. In addition, 50 µM DHA increased the phosphorylation of c-Jun N-terminal kinase (JNK) in suspended HUVECs, but not in attached HUVECs, for up to 5 h of treatment. The JNK inhibitor, SP600125, reversed DHA-induced cell death in suspended HUVECs, suggesting that the JNK pathway may mediate DHA-induced endothelial cell anoikis. The data from the present study indicates a novel mechanism for understanding the anti-angiogenic effects of DHA, which may be used as a component for chemotherapy.