Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fengzhu Sun is active.

Publication


Featured researches published by Fengzhu Sun.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A dynamic programming algorithm for haplotype block partitioning

Kui Zhang; Minghua Deng; Ting Chen; Michael S. Waterman; Fengzhu Sun

We develop a dynamic programming algorithm for haplotype block partitioning to minimize the number of representative single nucleotide polymorphisms (SNPs) required to account for most of the common haplotypes in each block. Any measure of haplotype quality can be used in the algorithm and of course the measure should depend on the specific application. The dynamic programming algorithm is applied to analyze the chromosome 21 haplotype data of Patil et al. [Patil, N., Berno, A. J., Hinds, D. A., Barrett, W. A., Doshi, J. M., Hacker, C. R., Kautzer, C. R., Lee, D. H., Marjoribanks, C., McDonough, D. P., et al. (2001) Science 294, 1719–1723], who searched for blocks of limited haplotype diversity. Using the same criteria as in Patil et al., we identify a total of 3,582 representative SNPs and 2,575 blocks that are 21.5% and 37.7% smaller, respectively, than those identified using a greedy algorithm of Patil et al. We also apply the dynamic programming algorithm to the same data set based on haplotype diversity. A total of 3,982 representative SNPs and 1,884 blocks are identified to account for 95% of the haplotype diversity in each block.


The ISME Journal | 2011

Marine bacterial, archaeal and protistan association networks reveal ecological linkages

Joshua A. Steele; Peter D. Countway; Li Xia; Patrick Vigil; J. Michael Beman; Diane Y. Kim; Cheryl-Emiliane T Chow; Rohan Sachdeva; Adriane C. Jones; Michael S. Schwalbach; Julie M. Rose; Ian Hewson; Anand Patel; Fengzhu Sun; David A. Caron; Jed A. Fuhrman

Microbes have central roles in ocean food webs and global biogeochemical processes, yet specific ecological relationships among these taxa are largely unknown. This is in part due to the dilute, microscopic nature of the planktonic microbial community, which prevents direct observation of their interactions. Here, we use a holistic (that is, microbial system-wide) approach to investigate time-dependent variations among taxa from all three domains of life in a marine microbial community. We investigated the community composition of bacteria, archaea and protists through cultivation-independent methods, along with total bacterial and viral abundance, and physico-chemical observations. Samples and observations were collected monthly over 3 years at a well-described ocean time-series site of southern California. To find associations among these organisms, we calculated time-dependent rank correlations (that is, local similarity correlations) among relative abundances of bacteria, archaea, protists, total abundance of bacteria and viruses and physico-chemical parameters. We used a network generated from these statistical correlations to visualize and identify time-dependent associations among ecologically important taxa, for example, the SAR11 cluster, stramenopiles, alveolates, cyanobacteria and ammonia-oxidizing archaea. Negative correlations, perhaps suggesting competition or predation, were also common. The analysis revealed a progression of microbial communities through time, and also a group of unknown eukaryotes that were highly correlated with dinoflagellates, indicating possible symbioses or parasitism. Possible ‘keystone’ species were evident. The network has statistical features similar to previously described ecological networks, and in network parlance has non-random, small world properties (that is, highly interconnected nodes). This approach provides new insights into the natural history of microbes.


Genome Biology | 2008

A critical assessment of Mus musculus gene function prediction using integrated genomic evidence

Lourdes Peña-Castillo; Murat Tasan; Chad L. Myers; Hyunju Lee; Trupti Joshi; Chao Zhang; Yuanfang Guan; Michele Leone; Andrea Pagnani; Wan-Kyu Kim; Chase Krumpelman; Weidong Tian; Guillaume Obozinski; Yanjun Qi; Guan Ning Lin; Gabriel F. Berriz; Francis D. Gibbons; Gert R. G. Lanckriet; Jian-Ge Qiu; Charles E. Grant; Zafer Barutcuoglu; David P. Hill; David Warde-Farley; Chris Grouios; Debajyoti Ray; Judith A. Blake; Minghua Deng; Michael I. Jordan; William Stafford Noble; Quaid Morris

Background:Several years after sequencing the human genome and the mouse genome, much remains to be discovered about the functions of most human and mouse genes. Computational prediction of gene function promises to help focus limited experimental resources on the most likely hypotheses. Several algorithms using diverse genomic data have been applied to this task in model organisms; however, the performance of such approaches in mammals has not yet been evaluated.Results:In this study, a standardized collection of mouse functional genomic data was assembled; nine bioinformatics teams used this data set to independently train classifiers and generate predictions of function, as defined by Gene Ontology (GO) terms, for 21,603 mouse genes; and the best performing submissions were combined in a single set of predictions. We identified strengths and weaknesses of current functional genomic data sets and compared the performance of function prediction algorithms. This analysis inferred functions for 76% of mouse genes, including 5,000 currently uncharacterized genes. At a recall rate of 20%, a unified set of predictions averaged 41% precision, with 26% of GO terms achieving a precision better than 90%.Conclusion:We performed a systematic evaluation of diverse, independently developed computational approaches for predicting gene function from heterogeneous data sources in mammals. The results show that currently available data for mammals allows predictions with both breadth and accuracy. Importantly, many highly novel predictions emerge for the 38% of mouse genes that remain uncharacterized.


Journal of Computational Biology | 2004

An integrated probabilistic model for functional prediction of proteins.

Minghua Deng; Ting Chen; Fengzhu Sun

We develop an integrated probabilistic model to combine protein physical interactions, genetic interactions, highly correlated gene expression networks, protein complex data, and domain structures of individual proteins to predict protein functions. The model is an extension of our previous model for protein function prediction based on Markovian random field theory. The model is flexible in that other protein pairwise relationship information and features of individual proteins can be easily incorporated. Two features distinguish the integrated approach from other available methods for protein function prediction. One is that the integrated approach uses all available sources of information with different weights for different sources of data. It is a global approach that takes the whole network into consideration. The second feature is that the posterior probability that a protein has the function of interest is assigned. The posterior probability indicates how confident we are about assigning the function to the protein. We apply our integrated approach to predict functions of yeast proteins based upon MIPS protein function classifications and upon the interaction networks based on MIPS physical and genetic interactions, gene expression profiles, tandem affinity purification (TAP) protein complex data, and protein domain information. We study the recall and precision of the integrated approach using different sources of information by the leave-one-out approach. In contrast to using MIPS physical interactions only, the integrated approach combining all of the information increases the recall from 57% to 87% when the precision is set at 57%-an increase of 30%.


Bioinformatics | 2004

Mapping gene ontology to proteins based on protein--protein interaction data

Minghua Deng; Zhidong Tu; Fengzhu Sun; Ting Chen

MOTIVATION Gene Ontology (GO) consortium provides structural description of protein function that is used as a common language for gene annotation in many organisms. Large-scale techniques have generated many valuable protein-protein interaction datasets that are useful for the study of protein function. Combining both GO and protein-protein interaction data allows the prediction of function for unknown proteins. RESULT We apply a Markov random field method to the prediction of yeast protein function based on multiple protein-protein interaction datasets. We assign function to unknown proteins with a probability representing the confidence of this prediction. The functions are based on three general categories of cellular component, molecular function and biological process defined in GO. The yeast proteins are defined in the Saccharomyces Genome Database (SGD). The protein-protein interaction datasets are obtained from the Munich Information Center for Protein Sequences (MIPS), including physical interactions and genetic interactions. The efficiency of our prediction is measured by applying the leave-one-out validation procedure to a functional path matching scheme, which compares the prediction with the GO description of a proteins function from the abstract level to the detailed level along the GO structure. For biological process, the leave-one-out validation procedure shows 52% precision and recall of our method, much better than that of the simple guilty-by-association methods.


Bioinformatics | 2005

HapBlock: haplotype block partitioning and tag SNP selection software using a set of dynamic programming algorithms

Kui Zhang; Zhaohui S. Qin; Ting Chen; Jun S. Liu; Michael S. Waterman; Fengzhu Sun

UNLABELLED Recent studies have revealed that linkage disequilibrium (LD) patterns vary across the human genome with some regions of high LD interspersed with regions of low LD. Such LD patterns make it possible to select a set of single nucleotide polymorphism (SNPs; tag SNPs) for genome-wide association studies. We have developed a suite of computer programs to analyze the block-like LD patterns and to select the corresponding tag SNPs. Compared to other programs for haplotype block partitioning and tag SNP selection, our program has several notable features. First, the dynamic programming algorithms implemented are guaranteed to find the block partition with minimum number of tag SNPs for the given criteria of blocks and tag SNPs. Second, both haplotype data and genotype data from unrelated individuals and/or from general pedigrees can be analyzed. Third, several existing measures/criteria for haplotype block partitioning and tag SNP selection have been implemented in the program. Finally, the programs provide flexibility to include specific SNPs (e.g. non-synonymous SNPs) as tag SNPs. AVAILABILITY The HapBlock program and its supplemental documents can be downloaded from the website http://www.cmb.usc.edu/~msms/HapBlock.


Journal of Computational Biology | 2009

Alignment-Free Sequence Comparison (I): Statistics and Power

Gesine Reinert; David Chew; Fengzhu Sun; Michael S. Waterman

Large-scale comparison of the similarities between two biological sequences is a major issue in computational biology; a fast method, the D(2) statistic, relies on the comparison of the k-tuple content for both sequences. Although it has been known for some years that the D(2) statistic is not suitable for this task, as it tends to be dominated by single-sequence noise, to date no suitable adjustments have been proposed. In this article, we suggest two new variants of the D(2) word count statistic, which we call D(2)(S) and D(2)(*). For D(2)(S), which is a self-standardized statistic, we show that the statistic is asymptotically normally distributed, when sequence lengths tend to infinity, and not dominated by the noise in the individual sequences. The second statistic, D(2)(*), outperforms D(2)(S) in terms of power for detecting the relatedness between the two sequences in our examples; but although it is straightforward to simulate from the asymptotic distribution of D(2)(*), we cannot provide a closed form for power calculations.


Bioinformatics | 2007

CGI: a new approach for prioritizing genes by combining gene expression and protein--protein interaction data

Xiaotu Ma; Hyunju Lee; Li Wang; Fengzhu Sun

MOTIVATION Identifying candidate genes associated with a given phenotype or trait is an important problem in biological and biomedical studies. Prioritizing genes based on the accumulated information from several data sources is of fundamental importance. Several integrative methods have been developed when a set of candidate genes for the phenotype is available. However, how to prioritize genes for phenotypes when no candidates are available is still a challenging problem. RESULTS We develop a new method for prioritizing genes associated with a phenotype by Combining Gene expression and protein Interaction data (CGI). The method is applied to yeast gene expression data sets in combination with protein interaction data sets of varying reliability. We found that our method outperforms the intuitive prioritizing method of using either gene expression data or protein interaction data only and a recent gene ranking algorithm GeneRank. We then apply our method to prioritize genes for Alzheimers disease. AVAILABILITY The code in this paper is available upon request.


BMC Bioinformatics | 2006

An integrated approach to the prediction of domain-domain interactions

Hyunju Lee; Minghua Deng; Fengzhu Sun; Ting Chen

BackgroundThe development of high-throughput technologies has produced several large scale protein interaction data sets for multiple species, and significant efforts have been made to analyze the data sets in order to understand protein activities. Considering that the basic units of protein interactions are domain interactions, it is crucial to understand protein interactions at the level of the domains. The availability of many diverse biological data sets provides an opportunity to discover the underlying domain interactions within protein interactions through an integration of these biological data sets.ResultsWe combine protein interaction data sets from multiple species, molecular sequences, and gene ontology to construct a set of high-confidence domain-domain interactions. First, we propose a new measure, the expected number of interactions for each pair of domains, to score domain interactions based on protein interaction data in one species and show that it has similar performance as the E-value defined by Riley et al. [1]. Our new measure is applied to the protein interaction data sets from yeast, worm, fruitfly and humans. Second, information on pairs of domains that coexist in known proteins and on pairs of domains with the same gene ontology function annotations are incorporated to construct a high-confidence set of domain-domain interactions using a Bayesian approach. Finally, we evaluate the set of domain-domain interactions by comparing predicted domain interactions with those defined in iPfam database [2, 3] that were derived based on protein structures. The accuracy of predicted domain interactions are also confirmed by comparing with experimentally obtained domain interactions from H. pylori [4]. As a result, a total of 2,391 high-confidence domain interactions are obtained and these domain interactions are used to unravel detailed protein and domain interactions in several protein complexes.ConclusionOur study shows that integration of multiple biological data sets based on the Bayesian approach provides a reliable framework to predict domain interactions. By integrating multiple data sources, the coverage and accuracy of predicted domain interactions can be significantly increased.


The ISME Journal | 2016

Correlation detection strategies in microbial data sets vary widely in sensitivity and precision

Sophie Weiss; Will Van Treuren; Catherine A. Lozupone; Karoline Faust; Jonathan Friedman; Ye Deng; Li Charlie Xia; Zhenjiang Zech Xu; Luke K. Ursell; Eric J. Alm; Amanda Birmingham; Jacob A. Cram; Jed A. Fuhrman; Jeroen Raes; Fengzhu Sun; Jizhong Zhou; Rob Knight

Disruption of healthy microbial communities has been linked to numerous diseases, yet microbial interactions are little understood. This is due in part to the large number of bacteria, and the much larger number of interactions (easily in the millions), making experimental investigation very difficult at best and necessitating the nascent field of computational exploration through microbial correlation networks. We benchmark the performance of eight correlation techniques on simulated and real data in response to challenges specific to microbiome studies: fractional sampling of ribosomal RNA sequences, uneven sampling depths, rare microbes and a high proportion of zero counts. Also tested is the ability to distinguish signals from noise, and detect a range of ecological and time-series relationships. Finally, we provide specific recommendations for correlation technique usage. Although some methods perform better than others, there is still considerable need for improvement in current techniques.

Collaboration


Dive into the Fengzhu Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Waterman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jed A. Fuhrman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jie Ren

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kui Zhang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Young Lu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge