Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ferenc A. Scheeren is active.

Publication


Featured researches published by Ferenc A. Scheeren.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors

Stephen B. Willingham; Jens-Peter Volkmer; Andrew J. Gentles; Debashis Sahoo; Piero Dalerba; Siddhartha Mitra; Jian Wang; Humberto Contreras-Trujillo; Robin Martin; Justin D. Cohen; Patricia Lovelace; Ferenc A. Scheeren; Mark P. Chao; Kipp Weiskopf; Chad Tang; Anne K. Volkmer; Tejaswitha J Naik; Theresa A. Storm; Adriane R. Mosley; Badreddin Edris; Seraina Schmid; Chris K. Sun; Mei-Sze Chua; Oihana Murillo; Pradeep S. Rajendran; Adriel C. Cha; Robert K. Chin; Dongkyoon Kim; Maddalena Adorno; Tal Raveh

CD47, a “dont eat me” signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.


Journal of Clinical Investigation | 2012

Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer

Holbrook Kohrt; Roch Houot; Kipp Weiskopf; Matthew J. Goldstein; Ferenc A. Scheeren; Debra K. Czerwinski; A. Dimitrios Colevas; Wen-Kai Weng; Michael F. Clarke; Robert W. Carlson; Frank E. Stockdale; Joseph A. Mollick; Lieping Chen; Ronald Levy

Trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2; also known as HER-2/neu), is indicated for the treatment of women with either early stage or metastatic HER2(+) breast cancer. It kills tumor cells by several mechanisms, including antibody-dependent cellular cytotoxicity (ADCC). Strategies that enhance the activity of ADCC effectors, including NK cells, may improve the efficacy of trastuzumab. Here, we have shown that upon encountering trastuzumab-coated, HER2-overexpressing breast cancer cells, human NK cells become activated and express the costimulatory receptor CD137. CD137 activation, which was dependent on NK cell expression of the FcγRIII receptor, occurred both in vitro and in the peripheral blood of women with HER2-expressing breast cancer after trastuzumab treatment. Stimulation of trastuzumab-activated human NK cells with an agonistic mAb specific for CD137 killed breast cancer cells (including an intrinsically trastuzumab-resistant cell line) more efficiently both in vitro and in vivo in xenotransplant models of human breast cancer, including one using a human primary breast tumor. The enhanced cytotoxicity was restricted to antibody-coated tumor cells. This sequential antibody strategy, combining a tumor-targeting antibody with a second antibody that activates the host innate immune system, may improve the therapeutic effects of antibodies against breast cancer and other HER2-expressing tumors.


Nature Immunology | 2005

STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression

Ferenc A. Scheeren; Marianne Naspetti; Sean A. Diehl; Remko Schotte; Maho Nagasawa; Erwin Wijnands; Ramon Gimeno; Florry A. Vyth-Dreese; Bianca Blom; Hergen Spits

It is unknown how B cells that mature during a germinal center reaction decide between plasma or memory cell fate. Here we describe a previously unknown subpopulation of B cells in the human germinal center that is characterized by tyrosine phosphorylated transcriptional activator STAT5. These cells had an activated centrocyte phenotype and had abundant expression of BCL6 but low expression of PRDM1, both encoding transcriptional repression proteins. Using RNA interference and ectopic expression of constitutively activated forms of STAT5, we demonstrate here a function for STAT5 in the self-renewal of B cells in vitro. STAT5b isoform seemed to directly upregulate Bcl-6, and ectopic expression of Bcl-6 in B cells resulted in self-renewal and inhibition of plasma cell differentiation. These data indicate that activation of STAT5 is involved in regulation of memory B cell differentiation.


Gastroenterology | 2012

Identification of a cKit+ Colonic Crypt Base Secretory Cell That Supports Lgr5+ Stem Cells in Mice

Michael E. Rothenberg; Ysbrand Nusse; Tomer Kalisky; John J. Lee; Piero Dalerba; Ferenc A. Scheeren; Neethan Lobo; Subhash Kulkarni; Sopheak Sim; Dalong Qian; Philip A. Beachy; Pankaj J. Pasricha; Stephen R. Quake; Michael F. Clarke

BACKGROUND & AIMSnPaneth cells contribute to the small intestinal niche of Lgr5(+) stem cells. Although the colon also contains Lgr5(+) stem cells, it does not contain Paneth cells. We investigated the existence of colonic Paneth-like cells that have a distinct transcriptional signature and support Lgr5(+) stem cells.nnnMETHODSnWe used multicolor fluorescence-activated cell sorting to isolate different subregions of colon crypts, based on known markers, from dissociated colonic epithelium of mice. We performed multiplexed single-cell gene expression analysis with quantitative reverse transcriptase polymerase chain reaction followed by hierarchical clustering analysis to characterize distinct cell types. We used immunostaining and fluorescence-activated cell sorting analyses with in vivo administration of a Notch inhibitor and in vitro organoid cultures to characterize different cell types.nnnRESULTSnMulticolor fluorescence-activated cell sorting could isolate distinct regions of colonic crypts. Four major epithelial subtypes or transcriptional states were revealed by gene expression analysis of selected populations of single cells. One of these, the goblet cells, contained a distinct cKit/CD117(+) crypt base subpopulation that expressed Dll1, Dll4, and epidermal growth factor, similar to Paneth cells, which were also marked by cKit. In the colon, cKit(+) goblet cells were interdigitated with Lgr5(+) stem cells. In vivo, this colonic cKit(+) population was regulated by Notch signaling; administration of a γ-secretase inhibitor to mice increased the number of cKit(+) cells. When isolated from mouse colon, cKit(+) cells promoted formation of organoids from Lgr5(+) stem cells, which expressed Kitl/stem cell factor, the ligand for cKit. When organoids were depleted of cKit(+) cells using a toxin-conjugated antibody, organoid formation decreased.nnnCONCLUSIONSncKit marks small intestinal Paneth cells and a subset of colonic goblet cells that are regulated by Notch signaling and support Lgr5(+) stem cells.


Chemistry & Biology | 2012

A Nonpeptidic Cathepsin S Activity-Based Probe for Noninvasive Optical Imaging of Tumor-Associated Macrophages

Martijn Verdoes; Laura E. Edgington; Ferenc A. Scheeren; Melissa J. Leyva; Galia Blum; Kipp Weiskopf; Michael H. Bachmann; Jonathan A. Ellman; Matthew Bogyo

Macrophage infiltration into tumors has been correlated with poor clinical outcome in multiple cancer types. Therefore, tools to image tumor-associated macrophages could be valuable for diagnosis and prognosis of cancer. Herein, we describe the synthesis and characterization of a cathepsin S-directed, quenched activity-based probe (qABP), BMV083. This probe makes use of an optimized nonpeptidic scaffold leading to enhanced in vivo properties relative to previously reported peptide-based probes. In a syngeneic breast cancer model, BMV083 provides high tumor-specific fluorescence that can be visualized using noninvasive optical imaging methods. Furthermore, analysis of probe-labeled cells demonstrates that the probe primarily targets macrophages with an M2 phenotype. Thus, BMV083 is a potential valuable in vivo reporter for tumor-associated macrophages that could greatly facilitate the future studies of macrophage function in the process of tumorigenesis.


eLife | 2014

miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway

Taichi Isobe; Shigeo Hisamori; Daniel J. Hogan; Maider Zabala; David G. Hendrickson; Piero Dalerba; Shang Cai; Ferenc A. Scheeren; Angera H. Kuo; Shaheen S. Sikandar; Jessica Lam; Dalong Qian; Frederick M. Dirbas; George Somlo; Kaiqin Lao; Patrick O. Brown; Michael F. Clarke; Yohei Shimono

MicroRNAs (miRNAs) are important regulators of stem and progenitor cell functions. We previously reported that miR-142 and miR-150 are upregulated in human breast cancer stem cells (BCSCs) as compared to the non-tumorigenic breast cancer cells. In this study, we report that miR-142 efficiently recruits the APC mRNA to an RNA-induced silencing complex, activates the canonical WNT signaling pathway in an APC-suppression dependent manner, and activates the expression of miR-150. Enforced expression of miR-142 or miR-150 in normal mouse mammary stem cells resulted in the regeneration of hyperproliferative mammary glands in vivo. Knockdown of endogenous miR-142 effectively suppressed organoid formation by BCSCs and slowed tumor growth initiated by human BCSCs in vivo. These results suggest that in some tumors, miR-142 regulates the properties of BCSCs at least in part by activating the WNT signaling pathway and miR-150 expression. DOI: http://dx.doi.org/10.7554/eLife.01977.001


Proceedings of the National Academy of Sciences of the United States of America | 2010

IL-21 imposes a type II EBV gene expression on type III and type I B cells by the repression of C- and activation of LMP-1-promoter.

Loránd L. Kis; Daniel Salamon; Emma K. Persson; Noémi M. Nagy; Ferenc A. Scheeren; Hergen Spits; George Klein; Eva Klein

Epstein–Barr virus (EBV) is associated with a variety of human tumors. Although the EBV-infected normal B cells in vitro and the EBV-carrying B cell lymphomas in immunodeficient patients express the full set of latent proteins (type III latency), the majority of EBV-associated malignancies express the restricted type I (EBNA-1 only) or type II (EBNA-1 and LMPs) viral program. The mechanisms responsible for these different latent viral gene expression patterns are only partially known. IL-21 is a potent B cell activator and plasma cell differentiation-inducer cytokine produced by CD4+ T cells. We studied its effect on EBV-carrying B cells. In type I Burkitt lymphoma (BL) cell lines and in the conditional lymphoblastoid cell line (LCL) ER/EB2-5, IL-21 potently activated STAT3 and induced the expression of LMP-1, but not EBNA-2. The IL-21-treated type I Jijoye M13 BL line ceased to proliferate, and this was paralleled by the induction of IRF4 and the down-regulation of BCL6 expression. In the type III LCLs and BL lines, IL-21 repressed the C-promoter-derived and LMP-2A mRNAs, whereas it up-regulated the expression of LMP-1 mRNAs. The IL-21-treated type III cells underwent plasma cell differentiation with the induction of Blimp-1, and high levels of Ig and Oct-2. IL-21 might be involved in the EBNA-2-independent expression of LMP-1 in EBV-carrying type II cells. In light of the fact that IL-21 is already in clinical trials for the treatment of multiple malignancies, the in vivo modulation of EBV gene expression by IL-21 might have therapeutic benefits for the EBV-carrying malignancies.


Stem Cells | 2014

Targeting Unique Metabolic Properties of Breast Tumor Initiating Cells

Weiguo Feng; Andrew J. Gentles; Ramesh V. Nair; Min Huang; Yuan Lin; Cleo Lee; Shang Cai; Ferenc A. Scheeren; Angera H. Kuo; Maximilian Diehn

Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about metabolic properties of cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to nontumorigenic cancer cells (NTCs). Transcriptome profiling using RNA‐Seq revealed TICs underexpress genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation, and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, plays a critical role in promoting the proglycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminated TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a potential therapeutic strategy for targeting these cells. Stem Cells 2014;32:1734–1745


Nature Cell Biology | 2014

A cell-intrinsic role for TLR2–MYD88 in intestinal and breast epithelia and oncogenesis

Ferenc A. Scheeren; Angera H. Kuo; Linda J. van Weele; Shang Cai; Iris Glykofridis; Shaheen S. Sikandar; Maider Zabala; Dalong Qian; Jessica Lam; Darius M. Johnston; Jens Peter Volkmer; Debashis Sahoo; Matt van de Rijn; Frederick M. Dirbas; George Somlo; Tomer Kalisky; Michael E. Rothenberg; Stephen R. Quake; Michael F. Clarke

It has been postulated that there is a link between inflammation and cancer. Here we describe a role for cell-intrinsic toll-like receptor-2 (TLR2; which is involved in inflammatory response) signalling in normal intestinal and mammary epithelial cells and oncogenesis. The downstream effectors of TLR2 are expressed by normal intestinal and mammary epithelia, including the stem/progenitor cells. Deletion of MYD88 or TLR2 in the intestinal epithelium markedly reduces DSS-induced colitis regeneration and spontaneous tumour development in mice. Limiting dilution transplantations of breast epithelial cells devoid of TLR2 or MYD88 revealed a significant decrease in mammary repopulating unit frequency compared with the control. Inhibition of TLR2, its co-receptor CD14, or its downstream targets MYD88 and IRAK1 inhibits growth of human breast cancers in vitro and in vivo. These results suggest that inhibitors of the TLR2 pathway merit investigation as possible therapeutic and chemoprevention agents.


Proceedings of the National Academy of Sciences of the United States of America | 2015

CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer

Ming T. Cheah; James Y. Chen; Debashis Sahoo; Humberto Contreras-Trujillo; Anne K. Volkmer; Ferenc A. Scheeren; Jens-Peter Volkmer; Irving L. Weissman

Significance Our study defines the crucial role of CD14-high bladder cancer (BC) cells in orchestrating multiple hallmarks of cancer in the early stages of BC. Inflammatory factors produced by this subpopulation of tumor cells activate angiogenesis to support establishment and maintenance of an immune-suppressive, inflammatory tumor microenvironment. Additionally, this subpopulation is able to drive tumor growth by producing factors that drive autocrine and paracrine proliferative stimulation. Here we show that a tumor-cell subpopulation establishes a tumor microenvironment orchestrating tumor-promoting inflammation and tumor-cell proliferation. Collectively, this study highlights the need to explore the broader role of CD14-expressing neoplastic cells in other solid tumors. It is noteworthy that CD14 expression is critical for IL6 secretion by these cells. Therefore, therapeutic targeting of CD14 might represent a strategy for treating cancer. Nonresolving chronic inflammation at the neoplastic site is consistently associated with promoting tumor progression and poor patient outcomes. However, many aspects behind the mechanisms that establish this tumor-promoting inflammatory microenvironment remain undefined. Using bladder cancer (BC) as a model, we found that CD14-high cancer cells express higher levels of numerous inflammation mediators and form larger tumors compared with CD14-low cells. CD14 antigen is a glycosyl-phosphatidylinositol (GPI)-linked glycoprotein and has been shown to be critically important in the signaling pathways of Toll-like receptor (TLR). CD14 expression in this BC subpopulation of cancer cells is required for increased cytokine production and increased tumor growth. Furthermore, tumors formed by CD14-high cells are more highly vascularized with higher myeloid cell infiltration. Inflammatory factors produced by CD14-high BC cells recruit and polarize monocytes and macrophages to acquire immune-suppressive characteristics. In contrast, CD14-low BC cells have a higher baseline cell division rate than CD14-high cells. Importantly, CD14-high cells produce factors that further increase the proliferation of CD14-low cells. Collectively, we demonstrate that CD14-high BC cells may orchestrate tumor-promoting inflammation and drive tumor cell proliferation to promote tumor growth.

Collaboration


Dive into the Ferenc A. Scheeren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge