Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ferenc Banati is active.

Publication


Featured researches published by Ferenc Banati.


Journal of Virology | 2007

Acetylated histone H3 and H4 mark the upregulated LMP2A promoter of Epstein-Barr virus in lymphoid cells.

Borbala Gerle; Anita Koroknai; György Fejer; Agnes Bakos; Ferenc Banati; Kalman Szenthe; Hans Wolf; Hans Helmut Niller; Janos Minarovits; Daniel Salamon

ABSTRACT We analyzed the levels of acetylated histones and histone H3 dimethylated on lysine 4 (H3K4me2) at the LMP2A promoter (LMP2Ap) of Epstein-Barr virus in well-characterized type I and type III lymphoid cell line pairs and additionally in the nasopharyngeal carcinoma cell line C666-1 by using chromatin immunoprecipitation. We found that enhanced levels of acetylated histones marked the upregulated LMP2Ap in lymphoid cells. In contrast, in C666-1 cells, the highly DNA-methylated, inactive LMP2Ap was also enriched in acetylated histones and H3K4me2. Our results suggest that the combinatorial effects of DNA methylation, histone acetylation, and H3K4me2 modulate the activity of LMP2Ap.


Journal of General Virology | 2009

Binding of CCCTC-binding factor in vivo to the region located between Rep* and the C promoter of Epstein-Barr virus is unaffected by CpG methylation and does not correlate with Cp activity

Daniel Salamon; Ferenc Banati; Anita Koroknai; Mate Ravasz; Kalman Szenthe; Zoltan Bathori; Agnes Bakos; Hans Helmut Niller; Hans Wolf; Janos Minarovits

In this study, the binding of the insulator protein CCCTC-binding factor (CTCF) to the region located between Rep* and the C promoter (Cp) of Epstein-Barr virus (EBV) was analysed using chromatin immunoprecipitation and in vivo footprinting. CTCF binding was found to be independent of Cp usage in cell lines corresponding to the major EBV latency types. Bisulfite sequencing and an electrophoretic mobility-shift assay (using methylated and unmethylated probes) revealed that CTCF binding was insufficient to induce local CpG demethylation in certain cell lines and was unaffected by CpG methylation in the region between Rep* and Cp. In addition, CTCF binding to the latency promoter, Qp, did not correlate with Qp activity.


Mediterranean Journal of Hematology and Infectious Diseases | 2009

THE IMPORTANCE OF EPIGENETIC ALTERATIONS IN THE DEVELOPMENT OF EPSTEIN-BARR VIRUS-RELATED LYMPHOMAS

Mária Takács; Judit Segesdi; Ferenc Banati; Anita Koroknai; Hans-Georg Wolf; Hans Helmut Niller; Janos Minarovits

Epstein-Barr virus (EBV), a human gammaherpesvirus, is associated with a series of malignant tumors. These include lymphomas (Burkitt’s lymphoma, Hodgkin’s disease, T/NK-cell lymphoma, post-transplant lymphoproliferative disease, AIDS-associated lymphoma, X-linked lymphoproliferative syndrome), carcinomas (nasopharyngeal carcinoma, gastric carcinoma, carcinomas of major salivary glands, thymic carcinoma, mammary carcinoma) and a sarcoma (leiomyosarcoma). The latent EBV genomes persist in the tumor cells as circular episomes, co-replicating with the cellular DNA once per cell cycle. The expression of latent EBV genes is cell type specific due to the strict epigenetic control of their promoters. DNA methylation, histone modifications and binding of key cellular regulatory proteins contribute to the regulation of alternative promoters for transcripts encoding the nuclear antigens EBNA1 to 6 and affect the activity of promoters for transcripts encoding transmembrane proteins (LMP1, LMP2A, LMP2B). In addition to genes transcribed by RNA polymerase II, there are also two RNA polymerase III transcribed genes in the EBV genome (EBER 1 and 2). The 5′ and internal regulatory sequences of EBER 1 and 2 transcription units are invariably unmethylated. The highly abundant EBER 1 and 2 RNAs are not translated to protein. Based on the cell type specific epigenetic marks associated with latent EBV genomes one can distinguish between viral epigenotypes that differ in transcriptional activity in spite of having an identical (or nearly identical) DNA sequence. Whereas latent EBV genomes are regularly targeted by epigenetic control mechanisms in different cell types, EBV encoded proteins may, in turn, affect the activity of a set of cellular promoters by interacting with the very same epigenetic regulatory machinery. There are EBNA1 binding sites in the human genome. Because high affinity binding of EBNA1 to its recognition sites is known to specify sites of DNA demethylation, we suggest that binding of EBNA1 to its cellular target sites may elicit local demethylation and contribute thereby to the activation of silent cellular promoters. EBNA2 interacts with histone acetyltransferases, and EBNALP (EBNA5) coactivates transcription by displacing histone deacetylase 4 from EBNA2-bound promoter sites. EBNA3C (EBNA6) seems to be associated both with histone acetylases and deacetylases, although in separate complexes. LMP1, a transmembrane protein involved in malignant transformation, can affect both alternative systems of epigenetic memory, DNA methylation and the Polycomb-trithorax group of protein complexes. In epithelial cells LMP1 can up-regulate DNA methyltransferases and, in Hodgkin lymphoma cells, induce the Polycomb group protein Bmi-1. In addition, LMP1 can also modulate cellular gene expression programs by affecting, via the NF-κB pathway, levels of cellular microRNAs miR-146a and miR-155. These interactions may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes (e.g. initiation and progression of malignant neoplasms, autoimmune phenomena, immunodeficiency). Thus, Epstein-Barr virus, similarly to other viruses and certain bacteria, may induce pathological changes by epigenetic reprogramming of host cells. Elucidation of the epigenetic consequences of EBV-host interactions (within the framework of the emerging new field of patho-epigenetics) may have important implications for therapy and disease prevention, because epigenetic processes are reversible and continuous silencing of EBV genes contributing to patho-epigenetic changes may prevent disease development.


Virus Genes | 2007

High-resolution analysis of CpG methylation and in vivo protein-DNA interactions at the alternative Epstein-Barr virus latency promoters Qp and Cp in the nasopharyngeal carcinoma cell line C666-1.

Agnes Bakos; Ferenc Banati; Anita Koroknai; Mária Takács; Daniel Salamon; Susanna Minarovits-Kormuta; Fritz Schwarzmann; Hans Wolf; Hans Helmut Niller; Janos Minarovits

Transcripts for the Epstein-Barr virus (EBV) encoded nuclear antigens (EBNAs) are initiated at alternative promoters (Wp, Cp, for EBNA 1–6 transcripts and Qp, for EBNA 1 transcripts only) located in the BamHI W, C or Q fragment of the viral genome. To understand the host-cell dependent expression of EBNAs in EBV-associated tumors (lymphomas and carcinomas) and in vitro transformed cell lines, it is necessary to analyse the regulatory mechanisms governing the activity of the alternative promoters of EBNA transcripts. Such studies focused mainly on lymphoid cell lines carrying latent EBV genomes, due to the lack of EBV-associated carcinoma cell lines maintaining latent EBV genomes during cultivation in tissue culture. We took advantage of the unique nasopharyngeal carcinoma cell line, C666-1, harboring EBV genomes, and undertook a detailed analysis of CpG methylation patterns and in vivo protein-DNA interactions at the latency promoters Qp and Cp. We found that the active, unmethylated Qp was marked with strong footprints of cellular transcription factors and the viral protein EBNA 1. In contrast, we could not detect binding of relevant transcription factors to the methylated, silent Cp. We concluded that the epigenetic marks at Qp and Cp in C666-1 cells of epithelial origin resemble those of group I Burkitt’s lymphoma cell lines.


FEBS Letters | 2008

CpG-methylation silences the activity of the RNA polymerase III transcribed EBER-1 promoter of Epstein-Barr virus

Ferenc Banati; Anita Koroknai; Daniel Salamon; Mária Takács; Susanna Minarovits-Kormuta; Hans Wolf; Hans Helmut Niller; Janos Minarovits

CpG‐methylation blocks the activity of RNA polymerase II transcribed promoters in most cases. In contrast, the role of DNA methylation in the regulation of RNA polymerase III transcribed promoters is less clarified. There are two untranslated viral RNAs (EBER‐1 and EBER‐2) in most malignant cells carrying latent Epstein‐Barr virus (EBV) genomes. We found that in vitro methylation blocked binding of the cellular proteins c‐Myc and ATF to the 5′‐region of the EBER‐1 gene, and silenced the expression of the EBER‐1 and EBER‐2 genes, transcribed by RNA polymerase III, in transfected cells.


European Journal of Cancer | 2008

Lineage-specific silencing of human IL-10 gene expression by promoter methylation in cervical cancer cells

Anita Szalmás; Ferenc Banati; Anita Koroknai; Brigitta László; Enik} o Fehér; Daniel Salamon; Lajos Gergely; Janos Minarovits; József Kónya

Epigenetic analysis was performed to demonstrate that the normal and neoplastic epithelial cells do not serve as the source of the locally elevated IL-10 production during cervical carcinogenesis. Bisulfite sequencing was used to correlate promoter CpG methylation with the transcription of the gene. Lack of IL-10 transcription in HeLa, SiHa, Caski, HT-3, C33-A, HaCaT cell lines and in primary human keratinocytes correlated consistently with the methylated state of the proximal CpG residues, particularly with the two most proximal CpGs at positions -185 and -110. These two sites were also highly methylated in normal and malignant cervical cells directly isolated from patient material. On the other hand, IL-10 producing peripheral blood mononuclear cells had unmethylated CpG residues in the proximal promoter associated with acetylated H3 and H4 histones as determined by chromatin immunoprecipitation. In HeLa carrying epigenetically silenced endogeneous IL-10 promoter, the transfected non-CpG methylated 1 kb and 0.6 kb proximal promoter fragments could drive reporter gene expression, which was reversed by cassette methylation of these promoter fragments. In conclusion, the CpG methylation pattern of the proximal promoter is implicated as a major determinant of transcriptional silencing of human IL-10 expression in cells of cervical epithelial origin.


Future Microbiology | 2014

Role of epigenetics in EBV regulation and pathogenesis

Hans Helmut Niller; Zsófia Tarnai; Gábor Decsi; Ádám Zsedényi; Ferenc Banati; Janos Minarovits

Epigenetic modifications of the viral and host cell genomes regularly occur in EBV-associated lymphomas and carcinomas. The cell type-dependent usage of latent EBV promoters is determined by the cellular epigenetic machinery. Viral oncoproteins interact with the very same epigenetic regulators and alter the cellular epigenotype and gene-expression pattern: there are common gene sets hypermethylated in both EBV-positive and EBV-negative neoplasms of different histological types. A group of hypermethylated promoters may represent, however, a unique EBV-associated epigenetic signature in EBV-positive gastric carcinomas. By contrast, EBV-immortalized B-lymphoblastoid cell lines are characterized by genome-wide demethylation and loss and rearrangement of heterochromatic histone marks. Early steps of EBV infection may also contribute to reprogramming of the cellular epigenome.


Archive | 2012

Epigenetic Changes in Virus-Associated Neoplasms

Hans Helmut Niller; Ferenc Banati; Eva Ay; Janos Minarovits

The viruses associated with malignant tumors in humans include DNA viruses (Epstein–Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), hepatitis B virus (HBV), human papillomavirus, Merkel cell polyomavirus) and a retrovirus replicating through a DNA intermediate (human T-lymphotropic virus, HTLV). Although Merkel cell polyomavirus remains yet to be studied, the expression of human tumor virus genomes is certainly affected by the cellular epigenetic machinery. A remarkable exception is hepatitis C virus (HCV), which causes a persistent infection: as far as we know, the RNA genome of HCV is exempt from the epigenetic control of the host cell.


Advances in Experimental Medicine and Biology | 2016

Epigenetic Dysregulation in Virus-Associated Neoplasms

Janos Minarovits; Anett Demcsák; Ferenc Banati; Hans Helmut Niller

The oncoproteins of human tumor viruses regularly interact with the cellular epigenetic machinery. Such interactions alter the epigenome of the host cell and reprogram its gene expression pattern. Altered levels or redistribution of (cytosine-5)-DNA methyltransferases and changes in the cellular methylome were observed in Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B virus (HBV), hepatitis D virus (HDV), hepatitis C virus (HCV), and human papillomavirus (HPV) associated neoplasms and cell lines. Methylation-mediated silencing of cellular promoters was also noted in Merkel cell polyomavirus (MCPyV) positive Merkel cell carcinomas, and, as discussed elsewhere, in EBV-associated malignancies and adenovirus-induced rodent tumors as well. Promoter activation also occurred, either associated with DNA hypomethylation or with the induction of euchromatic histone modifications by viral oncoproteins. It is worthy to notice that HCV infection induced large, hypomethylated blocks of cellular chromatin, although the exact molecular mechanism remains to be elucidated. In hepatoma cells expressing HBx, the oncoprotein encoded by the HBV genome, demethylation of the repetitive satellite 2 sequences was observed, due to downregulation of the de novo DNA methyltransferase DNMT3B. Tax and HBZ, the oncoproteins of human T-cell lymphotropic virus type I (HTLV-I), can both activate and silence distinct cellular promoters by interacting with cellular enzymes involved in histone modification.


PLOS ONE | 2014

The MEC1 and MEC2 lines represent two CLL subclones in different stages of progression towards prolymphocytic leukemia.

Eahsan Rasul; Daniel Salamon; Noémi M. Nagy; Benjamin Leveau; Ferenc Banati; Kalman Szenthe; Anita Koroknai; Janos Minarovits; George Klein; Eva Klein

The EBV carrying lines MEC1 and MEC2 were established earlier from explants of blood derived cells of a chronic lymphocytic leukemia (CLL) patient at different stages of progression to prolymphocytoid transformation (PLL). This pair of lines is unique in several respects. Their common clonal origin was proven by the rearrangement of the immunoglobulin genes. The cells were driven to proliferation in vitro by the same indigenous EBV strain. They are phenotypically different and represent subsequent subclones emerging in the CLL population. Furthermore they reflect the clinical progression of the disease. We emphasize that the support for the expression of the EBV encoded growth program is an important differentiation marker of the CLL cells of origin that was shared by the two subclones. It can be surmised that proliferation of EBV carrying cells in vitro, but not in vivo, reflects the efficient surveillance that functions even in the severe leukemic condition. The MEC1 line arose before the aggressive clinical stage from an EBV carrying cell within the subclone that was in the early prolymphocytic transformation stage while the MEC2 line originated one year later, from the subsequent subclone with overt PLL characteristics. At this time the disease was disseminated and the blood lymphocyte count was considerably elevated. The EBV induced proliferation of the MEC cells belonging to the subclones with markers of PLL agrees with earlier reports in which cells of PLL disease were infected in vitro and immortalized to LCL. They prove also that the expression of EBV encoded set of proteins can be determined at the event of infection. This pair of lines is particularly important as they provide in vitro cells that represent the subclonal evolution of the CLL disease. Furthermore, the phenotype of the MEC1 cells shares several characteristics of ex vivo CLL cells.

Collaboration


Dive into the Ferenc Banati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita Koroknai

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Wolf

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krisztina Buzás

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge