Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fergal J. O'Donoghue is active.

Publication


Featured researches published by Fergal J. O'Donoghue.


Thorax | 2009

Nocturnal non-invasive nasal ventilation in stable hypercapnic COPD: a randomised controlled trial

Ronald Douglas McEvoy; Robert J. Pierce; David R. Hillman; Adrian Esterman; E.E. Ellis; Peter G. Catcheside; Fergal J. O'Donoghue; David J. Barnes; Ronald R. Grunstein

Background: Sleep hypoventilation has been proposed as a cause of progressive hypercapnic respiratory failure and death in patients with severe chronic obstructive pulmonary disease (COPD). A study was undertaken to determine the effects of nocturnal non-invasive bi-level pressure support ventilation (NIV) on survival, lung function and quality of life in patients with severe hypercapnic COPD. Method: A multicentre, open-label, randomised controlled trial of NIV plus long-term oxygen therapy (LTOT) versus LTOT alone was performed in four Australian University Hospital sleep/respiratory medicine departments in patients with severe stable smoking-related COPD (forced expiratory volume in 1 s (FEV1.0) <1.5 litres or <50% predicted and ratio of FEV1.0 to forced vital capacity (FVC) <60% with awake arterial carbon dioxide tension (Paco2) >46 mm Hg and on LTOT for at least 3 months) and age <80 years. Patients with sleep apnoea (apnoea-hypopnoea index >20/h) or morbid obesity (body mass index >40) were excluded. Outcome measures were survival, spirometry, arterial blood gases, polysomnography, general and disease-specific quality of life and mood. Results: 144 patients were randomised (72 to NIV + LTOT and 72 to LTOT alone). NIV improved sleep quality and sleep-related hypercapnia acutely, and patients complied well with therapy (mean (SD) nightly use 4.5 (3.2) h). Compared with LTOT alone, NIV (mean follow-up 2.21 years, range 0.01–5.59) showed an improvement in survival with the adjusted but not the unadjusted Cox model (adjusted hazard ratio (HR) 0.63, 95% CI 0.40 to 0.99, p = 0.045; unadjusted HR 0.82, 95% CI 0.53 to 1.25, p = NS). FEV1.0 and Paco2 measured at 6 and 12 months were not different between groups. Patients assigned to NIV + LTOT had reduced general and mental health and vigour. Conclusions: Nocturnal NIV in stable oxygen-dependent patients with hypercapnic COPD may improve survival, but this appears to be at the cost of worsening quality of life. Trial registration number: ACTRN12605000205639


Sleep | 2011

Treating obstructive sleep apnea with hypoglossal nerve stimulation.

Peter R. Eastwood; Maree Barnes; Jennifer H. Walsh; Kathleen J. Maddison; Geoffrey Hee; Alan R. Schwartz; Philip L. Smith; Atul Malhotra; R. Douglas McEvoy; John R. Wheatley; Fergal J. O'Donoghue; Peter D. Rochford; Thomas J. Churchward; Matthew Campbell; Carsten E. Palme; Sam Robinson; George S. Goding; Danny J. Eckert; Amy S. Jordan; Peter G. Catcheside; Louise Tyler; Nick A. Antic; Christopher Worsnop; Eric J. Kezirian; David R. Hillman

BACKGROUND Reduced upper airway muscle activity during sleep is fundamental to obstructive sleep apnea (OSA) pathogenesis. Hypoglossal nerve stimulation (HGNS) counteracts this problem, with potential to reduce OSA severity. STUDY OBJECTIVES To examine safety and efficacy of a novel HGNS system (HGNS, Apnex Medical, Inc.) in treating OSA. PARTICIPANTS Twenty-one patients, 67% male, age (mean ± SD) 53.6 ± 9.2 years, with moderate to severe OSA and unable to tolerate continuous positive airway pressure (CPAP). DESIGN Each participant underwent surgical implantation of the HGNS system in a prospective single-arm interventional trial. OSA severity was defined by apnea-hypopnea index (AHI) during in-laboratory polysomnography (PSG) at baseline and 3 and 6 months post-implant. Therapy compliance was assessed by nightly hours of use. Symptoms were assessed using the Epworth Sleepiness Scale (ESS), Functional Outcomes of Sleep Questionnaire (FOSQ), Calgary Sleep Apnea Quality of Life Index (SAQLI), and the Beck Depression Inventory (BDI). RESULTS HGNS was used on 89% ± 15% of nights (n = 21). On these nights, it was used for 5.8 ± 1.6 h per night. Nineteen of 21 participants had baseline and 6-month PSGs. There was a significant improvement (all P < 0.05) from baseline to 6 months in: AHI (43.1 ± 17.5 to 19.5 ± 16.7), ESS (12.1 ± 4.7 to 8.1 ± 4.4), FOSQ (14.4 ± 2.0 to 16.7 ± 2.2), SAQLI (3.2 ± 1.0 to 4.9 ± 1.3), and BDI (15.8 ± 9.0 to 9.7 ± 7.6). Two serious device-related adverse events occurred: an infection requiring device removal and a stimulation lead cuff dislodgement requiring replacement. CONCLUSIONS HGNS demonstrated favorable safety, efficacy, and compliance. Participants experienced a significant decrease in OSA severity and OSA-associated symptoms. CLINICAL TRIAL INFORMATION NAME: Australian Clinical Study of the Apnex Medical HGNS System to Treat Obstructive Sleep Apnea. REGISTRATION NUMBER NCT01186926. URL: http://clinicaltrials.gov/ct2/show/NCT01186926.


Thorax | 2010

Changes in brain morphology in patients with obstructive sleep apnoea

Mary J. Morrell; Ml Jackson; G. L. Twigg; Ramesh Ghiassi; Dw McRobbie; Ra Quest; Heath R. Pardoe; Gaby S. Pell; David F. Abbott; Peter D. Rochford; Graeme D. Jackson; Robert J. Pierce; Fergal J. O'Donoghue; Douglas R. Corfield

Background Obstructive sleep apnoea (OSA) is a common disease that leads to daytime sleepiness and cognitive impairment. Attempts to investigate changes in brain morphology that may underlie these impairments have led to conflicting conclusions. This study was undertaken to aim to resolve this confusion, and determine whether OSA is associated with changes in brain morphology in a large group of patients with OSA, using improved voxel-based morphometry analysis, an automated unbiased method of detecting local changes in brain structure. Methods 60 patients with OSA (mean apnoea hypopnoea index 55 (95% CI 48 to 62) events/h, 3 women) and 60 non-apnoeic controls (mean apnoea hypopnoea index 4 (95% CI 3 to 5) events/h, 5 women) were studied. Subjects were imaged using T1-weighted 3-D structural MRI (69 subjects at 1.5 T, 51 subjects at 3 T). Differences in grey matter were investigated in the two groups, controlling for age, sex, site and intracranial volume. Dedicated cerebellar analysis was performed on a subset of 108 scans using a spatially unbiased infratentorial template. Results Patients with OSA had a reduction in grey matter volume in the right middle temporal gyrus compared with non-apnoeic controls (p<0.05, corrected for topological false discovery rate across the entire brain). A reduction in grey matter was also seen within the cerebellum, maximal in the left lobe VIIIb close to XI, extending across the midline into the right lobe. Conclusion These data show that OSA is associated with focal loss of grey matter that could contribute to cognitive decline. Specifically, lesions in the cerebellum may result in both motor dysfunction and working memory deficits, with downstream negative consequences on tasks such as driving.


Journal of Sleep Research | 2014

Hypoglossal nerve stimulation improves obstructive sleep apnea: 12-month outcomes

Eric J. Kezirian; George S. Goding; Atul Malhotra; Fergal J. O'Donoghue; Gary Zammit; John R. Wheatley; Peter G. Catcheside; Philip L. Smith; Alan R. Schwartz; Jennifer H. Walsh; Kathleen J. Maddison; David M. Claman; Tod Huntley; Steven Y. Park; Matthew Campbell; Carsten E. Palme; Conrad Iber; Peter R. Eastwood; David R. Hillman; Maree Barnes

Reduced upper airway muscle activity during sleep is a key contributor to obstructive sleep apnea pathogenesis. Hypoglossal nerve stimulation activates upper airway dilator muscles, including the genioglossus, and has the potential to reduce obstructive sleep apnea severity. The objective of this study was to examine the safety, feasibility and efficacy of a novel hypoglossal nerve stimulation system (HGNS®; Apnex Medical, St Paul, MN, USA) in treating obstructive sleep apnea at 12 months following implantation. Thirty‐one subjects (35% female, age 52.4 ± 9.4 years) with moderate to severe obstructive sleep apnea and unable to tolerate positive airway pressure underwent surgical implantation and activation of the hypoglossal nerve stimulation system in a prospective single‐arm interventional trial. Primary outcomes were changes in obstructive sleep apnea severity (apnea–hypopnea index, from in‐laboratory polysomnogram) and sleep‐related quality of life [Functional Outcomes of Sleep Questionnaire (FOSQ)]. Hypoglossal nerve stimulation was used on 86 ± 16% of nights for 5.4 ± 1.4 h per night. There was a significant improvement (P < 0.001) from baseline to 12 months in apnea–hypopnea index (45.4 ± 17.5 to 25.3 ± 20.6 events h−1) and Functional Outcomes of Sleep Questionnaire score (14.2 ± 2.0 to 17.0 ± 2.4), as well as other polysomnogram and symptom measures. Outcomes were stable compared with 6 months following implantation. Three serious device‐related adverse events occurred: an infection requiring device removal; and two stimulation lead cuff dislodgements requiring replacement. There were no significant adverse events with onset later than 6 months following implantation. Hypoglossal nerve stimulation demonstrated favourable safety, feasibility and efficacy.


Sleep | 2012

Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment

Fergal J. O'Donoghue; R. Mark Wellard; Peter D. Rochford; Andrew H. Dawson; Maree Barnes; Warren R. Ruehland; Melinda L. Jackson; Mark Howard; Robert J. Pierce; Graeme D. Jackson

STUDY OBJECTIVES To determine whether cerebral metabolite changes may underlie abnormalities of neurocognitive function and respiratory control in OSA. DESIGN Observational, before and after CPAP treatment. SETTING Two tertiary hospital research institutes. PARTICIPANTS 30 untreated severe OSA patients, and 25 age-matched healthy controls, all males free of comorbidities, and all having had detailed structural brain analysis using voxel-based morphometry (VBM). MEASUREMENTS AND RESULTS Single voxel bilateral hippocampal and brainstem, and multivoxel frontal metabolite concentrations were measured using magnetic resonance spectroscopy (MRS) in a high resolution (3T) scanner. Subjects also completed a battery of neurocognitive tests. Patients had repeat testing after 6 months of CPAP. There were significant differences at baseline in frontal N-acetylaspartate/choline (NAA/Cho) ratios (patients [mean (SD)] 4.56 [0.41], controls 4.92 [0.44], P = 0.001), and in hippocampal choline/creatine (Cho/Cr) ratios (0.38 [0.04] vs 0.41 [0.04], P = 0.006), (both ANCOVA, with age and premorbid IQ as covariates). No longitudinal changes were seen with treatment (n = 27, paired t tests), however the hippocampal differences were no longer significant at 6 months, and frontal NAA/Cr ratios were now also significantly different (patients 1.55 [0.13] vs control 1.65 [0.18] P = 0.01). No significant correlations were found between spectroscopy results and neurocognitive test results, but significant negative correlations were seen between arousal index and frontal NAA/Cho (r = -0.39, corrected P = 0.033) and between % total sleep time at SpO(2) < 90% and hippocampal Cho/Cr (r = -0.40, corrected P = 0.01). CONCLUSIONS OSA patients have brain metabolite changes detected by MRS, suggestive of decreased frontal lobe neuronal viability and integrity, and decreased hippocampal membrane turnover. These regions have previously been shown to have no gross structural lesions using VBM. Little change was seen with treatment with CPAP for 6 months. No correlation of metabolite concentrations was seen with results on neurocognitive tests, but there were significant negative correlations with OSA severity as measured by severity of nocturnal hypoxemia.


Thorax | 2002

Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD

Fergal J. O'Donoghue; Peter G. Catcheside; Amy S. Jordan; Andrew D. Bersten; Ronald Douglas McEvoy

Background: Intrinsic positive end expiratory pressure (PEEPi) constitutes an inspiratory threshold load on the respiratory muscles, increasing work of breathing. The role of continuous positive airway pressure (CPAP) in alleviating PEEPi in patients with severe stable chronic obstructive pulmonary disease is uncertain. This study examined the effect of CPAP on the inspiratory threshold load, muscle effort, and lung volume in this patient group. Methods: Nine patients were studied at baseline and with CPAP increasing in increments of 1 cm H2O to a maximum of 10 cm H2O. Breathing pattern and minute ventilation (V̇i), dynamic PEEPi, expiratory muscle activity, diaphragmatic (PTPdi/min) and oesophageal (PTPoes/min) pressure-time product per minute, integrated diaphragmatic (EMGdi) and intercostal EMG (EMGic) and end expiratory lung volume (EELV) were measured. Results: Expiratory muscle activity was present at baseline in one subject. In the remaining eight, PEEPi was reduced from a mean (SE) of 2.9 (0.6) cm H2O to 0.9 (0.1) cm H2O (p<0.05). In two subjects expiratory muscle activity contributed to PEEPi at higher pressures. There were no changes in respiratory pattern but V̇i increased from 9.2 (0.6) l/min to 10.7 (1.1) l/min (p<0.05). EMGdi remained stable while EMGic increased significantly. PTPoes/min decreased, although this did not reach statistical significance. PTPdi/min decreased significantly from 242.1 (32.1) cm H2O.s/min to 112.9 (21.7) cm H2O.s/min). EELV increased by 1.1 (0.3) l (p<0.01). Conclusion: High levels of CPAP reduce PEEPi and indices of muscle effort in patients with severe stable COPD, but only at the expense of substantial increases in lung volume.


PLOS ONE | 2013

Effects of Maternal Obstructive Sleep Apnoea on Fetal Growth: A Prospective Cohort Study

Alison M. Fung; Danielle L. Wilson; Martha Lappas; Mark Howard; Maree Barnes; Fergal J. O'Donoghue; Stephen Tong; Helen Esdale; Gabrielle Fleming; Susan P. Walker

Objective The objective of this study is to determine whether obstructive sleep apnea (OSA) is associated with reduced fetal growth, and whether nocturnal oxygen desaturation precipitates acute fetal heart rate changes. Study Design We performed a prospective observational study, screening 371 women in the second trimester for OSA symptoms. 41 subsequently underwent overnight sleep studies to diagnose OSA. Third trimester fetal growth was assessed using ultrasound. Fetal heart rate monitoring accompanied the sleep study. Cord blood was taken at delivery, to measure key regulators of fetal growth. Results Of 371 women screened, 108 (29%) were high risk for OSA. 26 high risk and 15 low risk women completed the longitudinal study; 14 had confirmed OSA (cases), and 27 were controls. The median (interquartile range) respiratory disturbance index (number of apnoeas, hypopnoeas or respiratory related arousals/hour of sleep) was 7.9 (6.1–13.8) for cases and 2.2 (1.3–3.5) for controls (p<0.001). Impaired fetal growth was observed in 43% (6/14) of cases, vs 11% (3/27) of controls (RR 2.67; 1.25–5.7; p = 0.04). Using logistic regression, only OSA (OR 6; 1.2–29.7, p = 0.03) and body mass index (OR 2.52; 1.09–5.80, p = 0.03) were significantly associated with impaired fetal growth. After adjusting for body mass index on multivariate analysis, the association between OSA and impaired fetal growth was not appreciably altered (OR 5.3; 0.93–30.34, p = 0.06), although just failed to achieve statistical significance. Prolonged fetal heart rate decelerations accompanied nocturnal oxygen desaturation in one fetus, subsequently found to be severely growth restricted. Fetal growth regulators showed changes in the expected direction- with IGF-1 lower, and IGFBP-1 and IGFBP-2 higher- in the cord blood of infants of cases vs controls, although were not significantly different. Conclusion OSA may be associated with reduced fetal growth in late pregnancy. Further evaluation is warranted to establish whether OSA may be an important contributor to adverse perinatal outcome, including stillbirth.


Journal of Neurology, Neurosurgery, and Psychiatry | 2016

Identifying who will benefit from non-invasive ventilation in amyotrophic lateral sclerosis/motor neurone disease in a clinical cohort

David J Berlowitz; Mark Howard; Julio Fiore; Stephen Vander Hoorn; Fergal J. O'Donoghue; Justine Westlake; Anna Smith; Fiona Beer; Susan Mathers; Paul Talman

Background Respiratory failure is associated with significant morbidity and is the predominant cause of death in motor neurone disease/amyotrophic lateral sclerosis (MND/ALS). This study aimed to determine the effect of non-invasive ventilatory (NIV) support on survival and pulmonary function decline across MND/ALS phenotypes. Methods Cohort recruited via a specialist, multidisciplinary clinic. Patients were categorised into four clinical phenotypes (ALS, flail arm, flail leg and primary lateral sclerosis) according to site of presenting symptom and the pattern of upper versus lower motor neurone involvement. NIV was initiated according to current consensus practice guidelines. Results Between 1991 and 2011, 1198 patients diagnosed with ALS/MND were registered. 929 patients (77.5%) fulfilled the selection criteria and their data were analysed. Median tracheostomy free survival from symptom onset was 28 months in NIV-treated patients compared to 15 months in untreated (Univariate Cox regression HR=0.61 (0.51 to 0.73), p<0.001). The positive survival effect of NIV persisted when the model was adjusted for age, gender, riluzole and percutaneous endoscopic gastrostomy use (HR=0.72 (0.60 to 0.88, p=0.001). In contrast with the only randomised controlled trial, NIV statistically significantly increased survival by 19 months in those with ALS-bulbar onset (Univariate HR=0.50 (0.36 to 0.70), multivariate HR=0.59 (0.41 to 0.83)). These data confirm that NIV improves survival in MND/ALS. The overall magnitude of benefit is 13 months and was largest in those with ALS-bulbar disease. Future research should explore the optimal timing of NIV initiation within phenotypes in order to optimise respiratory function, quality of life and survival.


Respiratory Care | 2011

Transcutaneous Measurement of Carbon Dioxide Tension During Extended Monitoring: Evaluation of Accuracy and Stability, and an Algorithm for Correcting Calibration Drift

David J Berlowitz; Jo Spong; Fergal J. O'Donoghue; Robert J Pierce; Douglas J Brown; Donald A. Campbell; Peter G. Catcheside; Ian Gordon; Peter D. Rochford

BACKGROUND: When polysomnography is indicated in a patient with a presumed sleep disorder, continuous monitoring of arterial carbon dioxide tension (PaCO2) is desirable, especially if nocturnal hypoventilation is suspected. Transcutaneous CO2 monitors (PtcCO2) provide a noninvasive correlate of PaCO2, but their accuracy and stability over extended monitoring have been considered inadequate for the diagnosis of hypoventilation. We examined the stability and accuracy of PtcCO2 measurements and the performance of a previously described linear interpolation technique designed to correct for calibration drift. METHODS: We compared the PtcCO2 values from 2 TINA TCM-3 monitors to PaCO2 values from arterial blood samples obtained at the beginning, every 15 min of the first hour, and then hourly over 8 hours of monitoring in 6 hemodynamically stable, male, intensive care patients (mean age 46 ± 17 y). RESULTS: Time had a significant (P = .002) linear effect on the PtcCO2-PaCO2 difference, suggesting calibration drift over the monitoring period. We found no differences between monitor type or interaction between time and monitor type. For the 2 monitors the uncorrected bias was 3.6 mm Hg and the limits of agreement were −5.1 to 12.3 mm Hg. Our linear interpolation algorithm improved the bias and limits of agreement to 0.4 and −5.5 to 6.4 mm Hg, respectively. CONCLUSIONS: Following stabilization and correction for both offset and drift, PtcCO2 tracks PaCO2 with minimal residual bias over 8 hours of monitoring. Should future research confirm these findings, then interpolated PtcCO2 may have an increased role in detecting sleep hypoventilation and assessing the efficacy of treatment.


Respirology | 2005

Respiratory function tests and their application

Robert J. Pierce; David R. Hillman; Ivan H. Young; Fergal J. O'Donoghue; P. V. Zimmerman; Stephen West; Jonathan Burdon

This document attempts to provide a broad consensus statement about common practice in respiratory function testing and the use of its results in assessing respiratory disease and disability. It is written for respiratory and general clinicians. General principles only are provided and the source documents are referenced but detail is not exhaustive and technically the document does not attempt to provide best practice guidelines. It is meant to reflect usual practice and in some individual patients use of respiratory function tests outside these guidelines may clearly be appropriate in particular clinical circumstances. General statements about quality assurance and cost benefit will be given at the end of the document but for each individual test there are sections on description, indications, interpretation, normal values, specific quality assurance and cost benefit. The scope of the document will cover tests of mechanical function, gas exchange and exercise assessment.

Collaboration


Dive into the Fergal J. O'Donoghue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maree Barnes

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Howard

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Trinder

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danny J. Eckert

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge