Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fergal P. Rattray is active.

Publication


Featured researches published by Fergal P. Rattray.


European Journal of Clinical Nutrition | 2010

Biogenic amines in fermented foods.

Giuseppe Spano; Pasquale Russo; Aline Lonvaud-Funel; Hervé Alexandre; C. Grandvalet; Emmanuel Coton; Monika Coton; L. Barnavon; B. Bach; Fergal P. Rattray; A. Bunte; Christian Magni; Victor Ladero; Miguel A. Alvarez; María Fernández; Paloma López; P.F. de Palencia; Angel L. Corbí; Hein Trip; Juke S. Lolkema

Food-fermenting lactic acid bacteria (LAB) are generally considered to be non-toxic and non-pathogenic. Some species of LAB, however, can produce biogenic amines (BAs). BAs are organic, basic, nitrogenous compounds, mainly formed through decarboxylation of amino acids. BAs are present in a wide range of foods, including dairy products, and can occasionally accumulate in high concentrations. The consumption of food containing large amounts of these amines can have toxicological consequences. Although there is no specific legislation regarding BA content in many fermented products, it is generally assumed that they should not be allowed to accumulate. The ability of microorganisms to decarboxylate amino acids is highly variable, often being strain specific, and therefore the detection of bacteria possessing amino acid decarboxylase activity is important to estimate the likelihood that foods contain BA and to prevent their accumulation in food products. Moreover, improved knowledge of the factors involved in the synthesis and accumulation of BA should lead to a reduction in their incidence in foods.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2003

Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo

Anders Fuglsang; Fergal P. Rattray; Dan Nilsson; Niels C. Berg Nyborg

A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus, were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test strains in this study, in general, produce inhibitory substances in varying amounts. Using a spectrophotometric assay based on amino group derivatization with ortho-phthaldialdehyde as a measure of relative peptide content, it was shown that there is a significant correlation between peptide formation and ACE inhibition, indicating that peptide measurement constitutes a convenient selection method. The effect of active fermentates on in vivo ACE activity was demonstrated in normotensive rats. The pressor effect of angiotensin I (0.3 μg/kg) upon intravenous injection was significantly lower when rats were pre-fed with milks fermented using two strains of Lactobacillus helveticus. An increased response to bradykinin (10 μg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise to an inhibition of ACE. The inhibition in vivo was low compared to what can be achieved with classical ACE inhibitors. The clinical relevance of this finding is discussed. This work is the first in which an effect of fermented milk on ACE in vivo has been demonstrated, measured as decreased ability to convert angiotensin I to angiotensin II.


Applied and Environmental Microbiology | 2011

Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis

Victor Ladero; Fergal P. Rattray; Baltasar Mayo; Maria Cruz Martin; María Fernández; Miguel A. Alvarez

ABSTRACT Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution.


Applied and Environmental Microbiology | 2010

Sequencing and Transcriptional Analysis of the Streptococcus thermophilus Histamine Biosynthesis Gene Cluster: Factors That Affect Differential hdcA Expression

Marina Calles-Enríquez; Benjamin Hjort Eriksen; Pia Skov Andersen; Fergal P. Rattray; Annette H. Johansen; María Fernández; Victor Ladero; Miguel A. Alvarez

ABSTRACT Histamine, a toxic compound that is formed by the decarboxylation of histidine through the action of microbial decarboxylases, can accumulate in fermented food products. From a total of 69 Streptococcus thermophilus strains screened, two strains, CHCC1524 and CHCC6483, showed the capacity to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high expression levels correlated with high histamine levels. Limited expression was evident during the lag and exponential growth phases. Low-temperature (4°C) incubation of milk inoculated with a histamine-producing strain showed lower levels of histamine than did inoculated milk kept at 42°C. This reduction was attributed to a reduction in the activity of the HdcA enzyme itself rather than a reduction in gene expression or the presence of a lower cell number.


International Dairy Journal | 1997

Purification and characterization of an intracellular esterase from Brevibacterium linens ATCC 9174

Fergal P. Rattray; Patrick F. Fox

An intracellular esterase from Brevibacterium linens ATCC 9174 was purified 44-fold to homogeneity using ammonium sulphate fractionation, anion exchange chromatography, hydrophobic interaction chromatography and anion exchange chromatography. The pH and temperature optima were 7.5 and 35 °C, respectively. The molecular mass of the enzyme was found to be 54 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis and 201 kDa by gel filtration, indicating that the native enzyme exists as a tetramer. The pI of the purified esterase was 4.0. The esterase was activated by ethylenediaminetetraacetic acid, but strongly inhibited by N-ethylmaleimide and p-hydroxymercuribenzoate, Cd2+, Zn2+ and Hg2+; activity was increased by dithiothreitol and cysteine at 0.1 mM, but decreased at 1.0 mM. The esterase hydrolysed β-naphthyl esters of acetic, butyric, caproic, caprylic and capric acids, but not of lauric, myristic, palmitic or oleic acids. Km and Kcat values for β-naphthyl butyrate were 0.1 mM and 0.2 s−1, respectively, while the corresponding values for β-naphthyl caproate were 0.03 mM and 0.5 s−1, respectively. The sequence of the first 19 N-terminal amino acids was NH2-Ala-Val-Tyr-Ser-Ala-Pro-Gly-Thr-Glu-Gly-Ser-Leu-Val-Thr-Phe-Lys-Pro-Arg-Tyr.


Molecular Microbiology | 2011

HdcB, a novel enzyme catalysing maturation of pyruvoyl-dependent histidine decarboxylase

Hein Trip; Niels L. Mulder; Fergal P. Rattray; Juke S. Lolkema

Pyruvoyl‐dependent histidine decarboxylases are produced as proenzymes that mature by cleavage followed by formation of the pyruvoyl prosthetic group. The histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524 that consists of the pyruvoyl‐dependent histidine decarboxylase HdcA and the histidine/histamine exchanger HdcP was functionally expressed in Lactococcus lactis. The operon encoding the pathway contains in addition to the hdcA and hdcP genes a third gene hdcB. Expression of different combinations of the genes in L. lactis and Escherichia coli followed by analysis of the protein products demonstrated the involvement of HdcB in the cleavage of the HdcA proenzyme. The HdcA proenzyme and HdcB protein were purified to homogeneity and cleavage and activation of the histidine decarboxylase activity was demonstrated in vitro. Substoichiometric amounts of HdcB were required to cleave HdcA showing that HdcB functions as an enzyme. In agreement, expression levels of HdcB in the cells were low relative to those of HdcA. The turnover number of HdcB in vitro was extremely low (0.05 min−1) which was due to a very slow association/dissociation of the enzyme/substrate complex. In fact, HdcB was shown to co‐purify both with the HdcA S82A mutant that mimics the proenzyme and with the mature HdcA complex.


Journal of Dairy Science | 2013

Physicochemical and sensory characterization of Cheddar cheese with variable NaCl levels and equal moisture content

Kirsten Kastberg Møller; Fergal P. Rattray; W.L.P. Bredie; Erik Høier; Ylva Ardö

The present study investigated the effect of salt (NaCl) on the flavor and texture of Cheddar cheese with the particular aim to elucidate consequences of, and strategies for, reducing the salt concentration. Descriptive sensory analysis and physicochemical mapping of 9-mo-old Cheddar cheeses containing 0.9, 1.3, 1.7, and 2.3% salt and an equal level of moisture (37.6 ± 0.1%) were undertaken. Moisture regulation during manufacture resulted in slightly higher calcium retention (158 to 169 mmol/kg) with decreasing NaCl concentration. Lactose was depleted only at 0.9 and 1.3% salt, resulting in concomitantly higher levels of lactate. Lower levels of casein components and free amino acids were observed with decreasing NaCl concentration, whereas levels of pH 4.6-soluble peptides were higher. Key taste-active compounds, including small hydrophobic peptides, lactose, lactate, and free amino acids, covaried positively with bitter, sweet, sour, and umami flavor intensities, respectively. An additional direct effect of salt due to taste-taste enhancement and suppression was noted. Sensory flavor profiles spanned a principal component dimension of palatability projecting true flavor compensation of salt into the space between cheeses containing 1.7 and 2.3% salt. This space was characterized by salt, umami, sweet, and a range of sapid flavors, and was contrasted by bitter and other off-flavors. Rheological and sensory measurements of texture were highly correlated. Cheeses made with 2.3% salt had a longer and slightly softer texture than cheeses containing 0.9, 1.3, and 1.7% salt, which all shared similar textural properties. Moisture regulation contributed to restoring the textural properties upon a 50% reduction in salt, but other factors were also important. On the other hand, significant flavor deterioration occurred inevitably. We discuss the potential of engineering a favorable basic taste profile to restore full palatability of Cheddar with a 50% reduction in salt.


Journal of Agricultural and Food Chemistry | 2012

Comparison of the Hydrolysis of Bovine κ-Casein by Camel and Bovine Chymosin: A Kinetic and Specificity Study

Kirsten Kastberg Møller; Fergal P. Rattray; Jens Christian Sørensen; Ylva Ardö

Bovine chymosin constitutes a traditional ingredient for enzymatic milk coagulation in cheese making, providing a strong clotting capacity and low general proteolytic activity. Recently, these properties were surpassed by camel chymosin, but the mechanistic difference behind their action is not yet clear. We used capillary electrophoresis and reversed-phase liquid chromatography-mass spectrometry to compare the first site of hydrolysis of camel and bovine chymosin on bovine κ-casein (CN) and to determine the kinetic parameters of this reaction (pH 6.5; 32 °C). The enzymes showed identical specificities, cleaving the Phe105-Met106 bond of κ-CN to produce para-κ-CN and caseinomacropeptide. Initial formation rates of both products validated Michaelis-Menten modeling of the kinetic properties of both enzymes. Camel chymosin bound κ-CN with ∼30% lower affinity (K(M)) and exhibited a 60% higher turnover rate (k(cat)), resulting in ∼15% higher catalytic efficiency (k(cat)/K(M)) as compared to bovine chymosin. A local, less dense negatively charged cluster on the surface of camel chymosin may weaken electrostatic binding to the His-Pro cluster of κ-CN to simultaneously impart reduced substrate affinity and accelerated enzyme-substrate dissociation as compared to bovine chymosin.


Journal of Agricultural and Food Chemistry | 2012

Camel and Bovine Chymosin Hydrolysis of Bovine αS1- and β-Caseins Studied by Comparative Peptide Mapping

Kirsten Kastberg Møller; Fergal P. Rattray; Ylva Ardö

In many cheese varieties, the general proteolytic activity of the coagulant is of great importance to the development of flavor and texture during ripening. This study used capillary electrophoresis and LC-MS/MS to compare the in vitro proteolytic behavior of camel and bovine chymosin (CC/BC) on bovine α(S1)- and β-casein (CN) at pH 6.5 and 30 °C. β-CN hydrolysis was also studied at pH 5.2 and in the presence of 0, 2, and 5% (w/v) NaCl. A total of 25 α(S1)- and 80 β-CN peptides were identified, and initial rates of early peptide formation were determined. The modes of proteolytic action of CC and BC shared a high degree of similarity generally. However, except for a few peptide bonds, CC was markedly less active, the magnitude of which varied widely with cleavage site. Preferential α(S1)-CN (Phe23-Phe24) and β-CN (Leu192-Tyr193) hydrolysis by CC proceeded at an estimated 36 and 7% of the initial rate of BC, respectively. The latter rate difference was largely pH and NaCl independent. Several cleavage sites appeared to be unique to CC and especially BC action, but qualitative differences were often predetermined by quantitative effects. In particular, negligible CC affinity to α(S1)-CN₁₆₄/₁₆₅ and β-CN₁₈₉/₁₉₀ prevented further exposure of the N-terminal products. β-CN hydrolysis by either enzyme was always stimulated at the lower pH, yet either inhibited or stimulated by the presence of NaCl, depending mainly on the predominating type of molecular substrate interactions involved at the specific site of cleavage. The potential impact of this proteolytic behavior on cheese quality is discussed.


Systematic and Applied Microbiology | 2002

Purification and characterisation of an extracellular fructan β-fructosidase from a Lactobacillus pentosus strain isolated from fermented fish

Christine Paludan-Müller; Lone Gram; Fergal P. Rattray

Lactobacillus pentosus B235, which was isolated as part of the dominant microflora from a garlic containing fermented fish product, was grown in a chemically defined medium with inulin as the sole carbohydrate source. An extracellular fructan beta-fructosidase was purified to homogeneity from the bacterial supernatant by ultrafiltration, anion exchange chromatography and hydrophobic interaction chromatography. The molecular weight of the enzyme was estimated to be approximately 126 kDa by gel filtration and by SDS-PAGE. The purified enzyme had the highest activity for levan (a beta(2-->6)-linked fructan), but also hydrolysed garlic extract, (a beta(2-->1)-linked fructan with beta(2-->6)-linked fructosyl sidechains), 1,1,1-kestose, 1,1-kestose, 1-kestose, inulin (beta(2-->1)-linked fructans) and sucrose at 60, 45, 39, 12, 9 and 3%, respectively, of the activity observed for levan. Melezitose, raffinose and stachyose were not hydrolysed by the enzyme. The fructan beta-fructosidase was inhibited by p-chloromercuribenzoate, EDTA, Fe2+, Cu2+, Zn2+ and Co2+, whereas Mn2+ and Cu2+ had no effect. The sequence of the first 20 N-terminal amino acids was: Ala-Thr-Ser-Ala-Ser-Ser-Ser-Gln-Ile-Ser-Gln-Asn-Asn-Thr-Gln-Thr-Ser-Asp-Val-Val. The enzyme had temperature and pH optima at 25 degrees C and 5.5, respectively. At concentrations of up to 12% NaCl no adverse effect on the enzyme activity was observed.

Collaboration


Dive into the Fergal P. Rattray's collaboration.

Top Co-Authors

Avatar

Ylva Ardö

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel A. Alvarez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Victor Ladero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María Fernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Hein Trip

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge