Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ferhan Ayaydin is active.

Publication


Featured researches published by Ferhan Ayaydin.


Plant Physiology | 2002

The Role of Auxin, pH, and Stress in the Activation of Embryogenic Cell Division in Leaf Protoplast-Derived Cells of Alfalfa

Taras P. Pasternak; Els Prinsen; Ferhan Ayaydin; Pál Miskolczi; Geert Potters; Han Asard; Harry Van Onckelen; Dénes Dudits; Attila Fehér

Culturing leaf protoplast-derived cells of the embryogenic alfalfa (Medicago sativa subsp. varia A2) genotype in the presence of low (1 μm) or high (10 μm) 2, 4-dichlorophenoxyacetic acid (2,4-D) concentrations results in different cell types. Cells exposed to high 2,4-D concentration remain small with dense cytoplasm and can develop into proembryogenic cell clusters, whereas protoplasts cultured at low auxin concentration elongate and subsequently die or form undifferentiated cell colonies. Fe stress applied at nonlethal concentrations (1 mm) in the presence of 1 μm2,4-D also resulted in the development of the embryogenic cell type. Although cytoplasmic alkalinization was detected during cell activation of both types, embryogenic cells could be characterized by earlier cell division, a more alkalic vacuolar pH, and nonfunctional chloroplasts as compared with the elongated, nonembryogenic cells. Buffering of the 10 μm 2,4-D-containing culture medium by 10 mm2-(N-morpholino)ethanesulfonic acid delayed cell division and resulted in nonembryogenic cell-type formation. The level of endogenous indoleacetic acid (IAA) increased transiently in all protoplast cultures during the first 4 to 5 d, but an earlier peak of IAA accumulation correlated with the earlier activation of the division cycle in embryogenic-type cells. However, this IAA peak could also be delayed by buffering of the medium pH by 2-(N-morpholino)ethanesulfonic acid. Based on the above data, we propose the involvement of stress responses, endogenous auxin synthesis, and the establishment of cellular pH gradients in the formation of the embryogenic cell type.


Journal of Cell Biology | 2006

SUSP1 antagonizes formation of highly SUMO2/3-conjugated species

Debaditya Mukhopadhyay; Ferhan Ayaydin; Nagamalleswari Kolli; Shyh-Han Tan; Tadashi Anan; Ai Kametaka; Yoshiaki Azuma; Keith D. Wilkinson; Mary Dasso

Small ubiquitin-related modifier (SUMO) processing and deconjugation are mediated by sentrin-specific proteases/ubiquitin-like proteases (SENP/Ulps). We show that SUMO-specific protease 1 (SUSP1), a mammalian SENP/Ulp, localizes within the nucleoplasm. SUSP1 depletion within cell lines expressing enhanced green fluorescent protein (EGFP) fusions to individual SUMO paralogues caused redistribution of EGFP-SUMO2 and -SUMO3, particularly into promyelocytic leukemia (PML) bodies. Further analysis suggested that this change resulted primarily from a deficit of SUMO2/3-deconjugation activity. Under these circumstances, PML bodies became enlarged and increased in number. We did not observe a comparable redistribution of EGFP-SUMO1. We have investigated the specificity of SUSP1 using vinyl sulfone inhibitors and model substrates. We found that SUSP1 has a strong paralogue bias toward SUMO2/3 and that it acts preferentially on substrates containing three or more SUMO2/3 moieties. Together, our findings argue that SUSP1 may play a specialized role in dismantling highly conjugated SUMO2 and -3 species that is critical for PML body maintenance.


Molecular Plant-microbe Interactions | 2011

Medicago truncatula IPD3 Is a Member of the Common Symbiotic Signaling Pathway Required for Rhizobial and Mycorrhizal Symbioses

Beatrix Horvath; Li Huey Yeun; Ágota Domonkos; Gábor Halász; Enrico Gobbato; Ferhan Ayaydin; Krisztina Miró; Sibylle Hirsch; Jongho Sun; Million Tadege; Pascal Ratet; Kirankumar S. Mysore; Jean-Michel Ané; Giles E. D. Oldroyd; Péter Kaló

Legumes form endosymbiotic associations with nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi which facilitate nutrient uptake. Both symbiotic interactions require a molecular signal exchange between the plant and the symbiont, and this involves a conserved symbiosis (Sym) signaling pathway. In order to identify plant genes required for intracellular accommodation of nitrogen-fixing bacteria and AM fungi, we characterized Medicago truncatula symbiotic mutants defective for rhizobial infection of nodule cells and colonization of root cells by AM hyphae. Here, we describe mutants impaired in the interacting protein of DMI3 (IPD3) gene, which has been identified earlier as an interacting partner of the calcium/calmodulin-dependent protein, a member of the Sym pathway. The ipd3 mutants are impaired in both rhizobial and mycorrhizal colonization and we show that IPD3 is necessary for appropriate Nod-factor-induced gene expression. This indicates that IPD3 is a member of the common Sym pathway. We observed differences in the severity of ipd3 mutants that appear to be the result of the genetic background. This supports the hypothesis that IPD3 function is partially redundant and, thus, additional genetic components must exist that have analogous functions to IPD3. This explains why mutations in an essential component of the Sym pathway have defects at late stages of the symbiotic interactions.


FEBS Letters | 2000

Nuclear localization of a hypoxia-inducible novel non-symbiotic hemoglobin in cultured alfalfa cells1

Csaba Seregélyes; László Mustárdy; Ferhan Ayaydin; László Sass; László Kovács; Gabriella Endre; Noémi Lukács; Izabella Kovács; Imre Vass; György B. Kiss; Gábor V. Horváth; Dénes Dudits

We have isolated a 483‐bp‐long full‐length cDNA clone encoding a non‐symbiotic hemoglobin called Mhb1, the first one found in alfalfa. This non‐symbiotic hemoglobin is a single copy gene localized in linkage group 4 in diploid Medicago genome. The Mhb1 mRNA was found only in the roots of alfalfa plants. The Mhb1 gene was inducible by hypoxia and showed no induction by cold stress treatment. The Mhb1 transcript level increased at the G2/M boundary in a synchronized alfalfa cell suspension culture. The majority of Mhb1 protein was shown to be localized in the nucleus and smaller amounts were detected in the cytoplasm. A potential link to the nitric oxide signalling pathway is also discussed.


PLOS ONE | 2011

Transmigration of Melanoma Cells through the Blood-Brain Barrier: Role of Endothelial Tight Junctions and Melanoma-Released Serine Proteases

Csilla Fazakas; Imola Wilhelm; Péter Nagyőszi; Attila Farkas; János Haskó; Judit Molnár; Hannelore Bauer; Hans-Christian Bauer; Ferhan Ayaydin; Ngo Thi Khue Dung; László Siklós; István A. Krizbai

Malignant melanoma represents the third common cause of brain metastasis, having the highest propensity to metastasize to the brain of all primary neoplasms in adults. Since the central nervous system lacks a lymphatic system, the only possibility for melanoma cells to reach the brain is via the blood stream and the blood-brain barrier. Despite the great clinical importance, mechanisms of transmigration of melanoma cells through the blood-brain barrier are incompletely understood. In order to investigate this question we have used an in vitro experimental setup based on the culture of cerebral endothelial cells (CECs) and the A2058 and B16/F10 melanoma cell lines, respectively. Melanoma cells were able to adhere to confluent brain endothelial cells, a process followed by elimination of protrusions and transmigration from the luminal to the basolateral side of the endothelial monolayers. The transmigration process of certain cells was accelerated when they were able to use the routes preformed by previously transmigrated melanoma cells. After migrating through the endothelial monolayer several melanoma cells continued their movement beneath the endothelial cell layer. Melanoma cells coming in contact with brain endothelial cells disrupted the tight and adherens junctions of CECs and used (at least partially) the paracellular transmigration pathway. During this process melanoma cells produced and released large amounts of proteolytic enzymes, mainly gelatinolytic serine proteases, including seprase. The serine protease inhibitor Pefabloc® was able to decrease to 44–55% the number of melanoma cells migrating through CECs. Our results suggest that release of serine proteases by melanoma cells and disintegration of the interendothelial junctional complex are main steps in the formation of brain metastases in malignant melanoma.


Microbial Cell Factories | 2010

Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications

Kinga Umenhoffer; Tamás Fehér; Gabriella Balikó; Ferhan Ayaydin; Janos Posfai; Frederick R. Blattner; György Pósfai

BackgroundEvolvability is an intrinsic feature of all living cells. However, newly emerging, evolved features can be undesirable when genetic circuits, designed and fabricated by rational, synthetic biological approaches, are installed in the cell. Streamlined-genome E. coli MDS42 is free of mutation-generating IS elements, and can serve as a host with reduced evolutionary potential.ResultsWe analyze an extreme case of toxic plasmid clone instability, and show that random host IS element hopping, causing inactivation of the toxic cloned sequences, followed by automatic selection of the fast-growing mutants, can prevent the maintenance of a clone developed for vaccine production. Analyzing the molecular details, we identify a hydrophobic protein as the toxic byproduct of the clone, and show that IS elements spontaneously landing in the cloned fragment relieve the cell from the stress by blocking transcription of the toxic gene. Bioinformatics analysis of sequence reads from early shotgun genome sequencing projects, where clone libraries were constructed and maintained in E. coli, suggests that such IS-mediated inactivation of ectopic genes inhibiting the growth of the E. coli cloning host might happen more frequently than generally anticipated, leading to genomic instability and selection of altered clones.ConclusionsDelayed genetic adaptation of clean-genome, IS-free MDS42 host improves maintenance of unstable genetic constructs, and is suggested to be beneficial in both laboratory and industrial settings.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant

Beatrix Horvath; Ágota Domonkos; Attila Kereszt; Attila Szűcs; Edit Ábrahám; Ferhan Ayaydin; Károly Bóka; Yuhui Chen; Rujin Chen; Jeremy D. Murray; Michael K. Udvardi; Eva Kondorosi; Péter Kaló

Significance In certain legume–rhizobia symbioses, the host plant is thought to control the terminal differentiation of its bacterial partner leading to nitrogen fixation. In Medicago truncatula, over 600 genes coding for nodule-specific cysteine-rich (NCR) peptides are expressed during nodule development and have been implicated in bacteroid differentiation. Up to now it was generally assumed that most of these peptides, if not all, act redundantly. By demonstrating that deletion of a single member of the NCR gene family can result in an ineffective symbiotic phenotype, we show that specific NCR peptides can have essential, non-redundant roles in controlling bacterial differentiation and symbiotic nitrogen fixation. Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.


Plant Growth Regulation | 2000

Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa

Taras P. Pasternak; Pál Miskolczi; Ferhan Ayaydin; Tamás Mészáros; Dénes Dudits; Attila Fehér

Alfalfa leaf protoplast cultures were used to study the role ofexogenously supplied auxin and cytokinin on the level and activity ofCdc2-related protein kinases and progression through the first celldivision cycle after re-activation of cell division. Among the threealfalfa Cdc2-related kinases studied, the Cdc2MsA/B kinase (PSTAIRE)showed only significant activity during the first four days ofprotoplast culture while the Cdc2MsD (PPTALRE) and Cdc2MsF kinases(PPTTLRE) exhibited only low or undetectable activity, respectively,during this period. Although the Cdc2MsA/B protein could be detectedin leaves and freshly isolated protoplasts in variable amounts, thekinase was never active in these cells. The kinase protein disappearedfrom protoplast-derived cells at the beginning (8h) of culture but itssynthesis re-commenced dependent on the presence of exogenous auxin butnot cytokinin. The cytokinin response of alfalfa protoplast-derivedcells varied significantly in different experiments although cytokininwas always required for completion of the first cell division cycle.Frequently both auxin and cytokinin was required for DNA replication asnot more than 5% of cells could incorporate BrdU into their DNAduring three days and significant Cdc2MsA/B activity could not bedetected in the absence of exogenous cytokinin. In other protoplastpopulations, the Cdc2MsA/B kinase was activated by auxin alone andallowed the protoplast-derived cells to enther the S-phase at a similarrate observed in parallel cultures with both auxin and cytokinin. Evenin these cultures, however, ca. 95% of the protoplast-derivedcells were arrested before mitosis without exogenous cytokinin supplywhich could be correlated with decreasing Cdc2MsA/B activity. Theseobservations suggest, that although cytokinin is required for bothG0-G1/S and G2/M cell cycle transitions, in certain cultures theG1/S requirement is overcome by some unknown factors (e.g.conditions of explants; endogenous cytokinins etc.). Furthermore, ourexperiments indicate, that the roles of cytokinin are related to thepost-translational regulation of the Cdc2MsA/B kinase complex atboth cell cycle transition points in alfalfa leaf protoplast-derivedcells. Finally, as a marker for the transition from the differentiated(G0) stage to the activated (G1) stage, we suggest using the parametersof nuclear morphology (size and ratio ofnucleus/nucleolus).


Annals of Botany | 2011

Cell-cycle control as a target for calcium, hormonal and developmental signals: the role of phosphorylation in the retinoblastoma-centred pathway

Dénes Dudits; Edit Ábrahám; Pál Miskolczi; Ferhan Ayaydin; Metin Bilgin; Gábor V. Horváth

BACKGROUND During the life cycle of plants, both embryogenic and post-embryogenic growth are essentially based on cell division and cell expansion that are under the control of inherited developmental programmes modified by hormonal and environmental stimuli. Considering either stimulation or inhibition of plant growth, the key role of plant hormones in the modification of cell division activities or in the initiation of differentiation is well supported by experimental data. At the same time there is only limited insight into the molecular events that provide linkage between the regulation of cell-cycle progression and hormonal and developmental control. Studies indicate that there are several alternative ways by which hormonal signalling networks can influence cell division parameters and establish functional links between regulatory pathways of cell-cycle progression and genes and protein complexes involved in organ development. SCOPE An overview is given here of key components in plant cell division control as acceptors of hormonal and developmental signals during organ formation and growth. Selected examples are presented to highlight the potential role of Ca(2+)-signalling, the complex actions of auxin and cytokinins, regulation by transcription factors and alteration of retinoblastoma-related proteins by phosphorylation. CONCLUSIONS Auxins and abscisic acid can directly influence expression of cyclin, cyclin-dependent kinase (CDK) genes and activities of CDK complexes. D-type cyclins are primary targets for cytokinins and over-expression of CyclinD3;1 can enhance auxin responses in roots. A set of auxin-activated genes (AXR1-ARGOS-ANT) controls cell number and organ size through modification of CyclinD3;1 gene expression. The SHORT ROOT (SHR) and SCARECROW (SCR) transcriptional factors determine root patterning by activation of the CYCD6;1 gene. Over-expression of the EBP1 gene (plant homologue of the ErbB-3 epidermal growth factor receptor-binding protein) increased biomass by auxin-dependent activation of both D- and B-type cyclins. The direct involvement of auxin-binding protein (ABP1) in the entry into the cell cycle and the regulation of leaf size and morphology is based on the transcriptional control of D-cyclins and retinoblastoma-related protein (RBR) interacting with inhibitory E2FC transcriptional factor. The central role of RBRs in cell-cycle progression is well documented by a variety of experimental approaches. Their function is phosphorylation-dependent and both RBR and phospho-RBR proteins are present in interphase and mitotic phase cells. Immunolocalization studies showed the presence of phospho-RBR protein in spots of interphase nuclei or granules in mitotic prophase cells. The Ca(2+)-dependent phosphorylation events can be accomplished by the calcium-dependent, calmodulin-independent or calmodulin-like domain protein kinases (CDPKs/CPKs) phosphorylating the CDK inhibitor protein (KRP). Dephosphorylation of the phospho-RBR protein by PP2A phosphatase is regulated by a Ca(2+)-binding subunit.


Lipids in Health and Disease | 2010

Polyunsaturated fatty acids synergize with lipid droplet binding thalidomide analogs to induce oxidative stress in cancer cells.

László G. Puskás; Liliána Z. Fehér; Csaba Vizler; Ferhan Ayaydin; Erzsébet Rásó; Eszter Molnár; István Magyary; Iván Kanizsai; Márió Gyuris; Ramóna Madácsi; Gabriella Fábián; Klaudia Farkas; Péter Hegyi; Ferenc Baska; Béla Ózsvári; Klára Kitajka

BackgroundCytoplasmic lipid-droplets are common inclusions of eukaryotic cells. Lipid-droplet binding thalidomide analogs (2,6-dialkylphenyl-4/5-amino-substituted-5,6,7-trifluorophthalimides) with potent anticancer activities were synthesized.ResultsCytotoxicity was detected in different cell lines including melanoma, leukemia, hepatocellular carcinoma, glioblastoma at micromolar concentrations. The synthesized analogs are non-toxic to adult animals up to 1 g/kg but are teratogenic to zebrafish embryos at micromolar concentrations with defects in the developing muscle. Treatment of tumor cells resulted in calcium release from the endoplasmic reticulum (ER), induction of reactive oxygen species (ROS), ER stress and cell death. Antioxidants could partially, while an intracellular calcium chelator almost completely diminish ROS production. Exogenous docosahexaenoic acid or eicosapentaenoic acid induced calcium release and ROS generation, and synergized with the analogs in vitro, while oleic acid had no such an effect. Gene expression analysis confirmed the induction of ER stress-mediated apoptosis pathway components, such as GADD153, ATF3, Luman/CREB3 and the ER-associated degradation-related HERPUD1 genes. Tumor suppressors, P53, LATS2 and ING3 were also up-regulated in various cell lines after drug treatment. Amino-phthalimides down-regulated the expression of CCL2, which is implicated in tumor metastasis and angiogenesis.ConclusionsBecause of the anticancer, anti-angiogenic action and the wide range of applicability of the immunomodulatory drugs, including thalidomide analogs, lipid droplet-binding members of this family could represent a new class of agents by affecting ER-membrane integrity and perturbations of ER homeostasis.

Collaboration


Dive into the Ferhan Ayaydin's collaboration.

Top Co-Authors

Avatar

Dénes Dudits

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gábor V. Horváth

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Attila Fehér

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Edit Ábrahám

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

László G. Puskás

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pál Miskolczi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Imre Vass

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

László Kovács

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Éva Hideg

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gabriella Endre

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge