Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ferhat Ozturk is active.

Publication


Featured researches published by Ferhat Ozturk.


Evidence-based Complementary and Alternative Medicine | 2013

Hepatoprotective Potential of Chestnut Bee Pollen on Carbon Tetrachloride-Induced Hepatic Damages in Rats

Oktay Yildiz; Zehra Can; Özlem Saral; Esin Yuluğ; Ferhat Ozturk; Rezzan Aliyazicioglu; Sinan Canpolat; Sevgi Kolayli

Bee pollen has been used as an apitherapy agent for several centuries to treat burns, wounds, gastrointestinal disorders, and various other diseases. The aim of our study was to investigate the hepatoprotective effects of chestnut bee pollen against carbon tetrachloride (CCI4)-induced liver damage. Total phenolic content, flavonoid, ferric reducing/antioxidant power, and DPPH radical activity measurements were used as antioxidant capacity determinants of the pollen. The study was conducted in rats as seven groups. Two different concentrations of chestnut bee pollens (200 and 400 mg/kg/day) were given orally and one group was administered with silibinin (50 mg/kg/day, i.p.) for seven days to the rats following the CCI4 treatment. The protective effect of the bee pollen was monitored by aspartate transaminase (AST) and alanine transaminase (AST) activities, histopathological imaging, and antioxidant parameters from the blood and liver samples of the rats. The results were compared with the silibinin-treated and untreated groups. We detected that CCI4 treatment induced liver damage and both the bee pollen and silibinin-treated groups reversed the damage; however, silibinin caused significant weight loss and mortality due, severe diarrhea in the rats. The chestnut pollen had showed 28.87 mg GAE/g DW of total phenolic substance, 8.07 mg QUE/g DW of total flavonoid, 92.71 mg Cyn-3-glu/kg DW of total anthocyanins, and 9 mg β-carotene/100 g DW of total carotenoid and substantial amount of antioxidant power according to FRAP and DPPH activity. The results demonstrated that the chestnut bee pollen protects the hepatocytes from the oxidative stress and promotes the healing of the liver damage induced by CCI4 toxicity. Our findings suggest that chestnut bee pollen can be used as a safe alternative to the silibinin in the treatment of liver injuries.


Journal of Cellular Biochemistry | 2012

Transforming growth factor‐β activates c‐Myc to promote palatal growth

Xiujuan Zhu; Ferhat Ozturk; ChangChih Liu; Gregory G. Oakley; Ali Nawshad

During palatogenesis, the palatal mesenchyme undergoes increased cell proliferation resulting in palatal growth, elevation and fusion of the two palatal shelves. Interestingly, the palatal mesenchyme expresses all three transforming growth factor (TGF) β isoforms (1, 2, and 3) throughout these steps of palatogenesis. However, the role of TGFβ in promoting proliferation of palatal mesenchymal cells has never been explored. The purpose of this study was to identify the effect of TGFβ on human embryonic palatal mesenchymal (HEPM) cell proliferation. Our results showed that all isoforms of TGFβ, especially TGFβ3, increased HEPM cell proliferation by up‐regulating the expression of cyclins and cyclin‐dependent kinases as well as c‐Myc oncogene. TGFβ activated both Smad‐dependent and Smad‐independent pathways to induce c‐Myc gene expression. Furthermore, TBE1 is the only functional Smad binding element (SBE) in the c‐Myc promoter and Smad4, activated by TGFβ, binds to the TBE1 to induce c‐Myc gene activity. We conclude that HEPM proliferation is manifested by the induction of c‐Myc in response to TGFβ signaling, which is essential for complete palatal confluency. Our data highlights the potential role of TGFβ as a therapeutic molecule to correct cleft palate by promoting growth. J. Cell. Biochem. 113: 3069–3085, 2012.


Journal of Cellular Physiology | 2015

TGFβ3 Regulates Periderm Removal Through ΔNp63 in the Developing Palate

Lihua Hu; Zhi Li; Ferhat Ozturk; Channabasavaiah B. Gurumurthy; Rose-Anne Romano; Satrajit Sinha; Ali Nawshad

The periderm is a flat layer of epithelium created during embryonic development. During palatogenesis, the periderm forms a protective layer against premature adhesion of the oral epithelia, including the palate. However, the periderm must be removed in order for the medial edge epithelia (MEE) to properly adhere and form a palatal seam. Improper periderm removal results in a cleft palate. Although the timing of transforming growth factor β3 (TGFβ3) expression in the MEE coincides with periderm degeneration, its role in periderm desquamation is not known. Interestingly, murine models of knockout (−/−) TGFβ3, interferon regulatory factor 6 (IRF6) (−/−), and truncated p63 (ΔNp63) (−/−) are born with palatal clefts because of failure of the palatal shelves to adhere, suggesting that these genes regulate palatal epithelial differentiation. However, despite having similar phenotypes in null mouse models, no studies have analyzed the possible association between the TGFβ3 signaling cascade and the IRF6/ΔNp63 genes during palate development. Recent studies indicate that regulation of ΔNp63, which depends on IRF6, facilitates epithelial differentiation. We performed biochemical analysis, gene activity and protein expression assays with palatal sections of TGFβ3 (−/−), ΔNp63 (−/−), and wild‐type (WT) embryos, and primary MEE cells from WT palates to analyze the association between TGFβ3 and IRF6/ΔNp63. Our results suggest that periderm degeneration depends on functional TGFβ3 signaling to repress ΔNp63, thereby coordinating periderm desquamation. Cleft palate occurs in TGFβ3 (−/−) because of inadequate periderm removal that impedes palatal seam formation, while cleft palate occurs in ΔNp63 (−/−) palates because of premature fusion. J. Cell. Physiol. 230: 1212–1225, 2015.


BMC Genomics | 2013

Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice

Ferhat Ozturk; You Li; Xiujuan Zhu; Chittibabu Guda; Ali Nawshad

BackgroundIn humans, cleft palate (CP) accounts for one of the largest number of birth defects with a complex genetic and environmental etiology. TGFβ3 has been established as an important regulator of palatal fusion in mice and it has been shown that TGFβ3-null mice exhibit CP without any other major deformities. However, the genes that regulate cellular decisions and molecular mechanisms maintained by the TGFβ3 pathway throughout palatogenesis are predominantly unexplored. Our objective in this study was to analyze global transcriptome changes within the palate during different gestational ages within TGFβ3 knockout mice to identify TGFβ3-associated genes previously unknown to be associated with the development of cleft palate. We used deep sequencing technology, RNA-Seq, to analyze the transcriptome of TGFβ3 knockout mice at crucial stages of palatogenesis, including palatal growth (E14.5), adhesion (E15.5), and fusion (E16.5).ResultsThe overall transcriptome analysis of TGFβ3 wildtype mice (C57BL/6) reveals that almost 6000 genes were upregulated during the transition from E14.5 to E15.5 and more than 2000 were downregulated from E15.5 to E16.5. Using bioinformatics tools and databases, we identified the most comprehensive list of CP genes (n = 322) in which mutations cause CP either in humans or mice, and analyzed their expression patterns. The expression motifs of CP genes between TGFβ3+/− and TGFβ3−/− were not significantly different from each other, and the expression of the majority of CP genes remained unchanged from E14.5 to E16.5. Using these patterns, we identified 8 unique genes within TGFβ3−/− mice (Chrng, Foxc2, H19, Kcnj13, Lhx8, Meox2, Shh, and Six3), which may function as the primary contributors to the development of cleft palate in TGFβ3−/− mice. When the significantly altered CP genes were overlaid with TGFβ signaling, all of these genes followed the Smad-dependent pathway.ConclusionsOur study represents the first analysis of the palatal transcriptome of the mouse, as well as TGFβ3 knockout mice, using deep sequencing methods. In this study, we characterized the critical regulation of palatal transcripts that may play key regulatory roles through crucial stages of palatal development. We identified potential causative CP genes in a TGFβ3 knockout model, which may lead to a better understanding of the genetic mechanisms of palatogenesis and provide novel potential targets for gene therapy approaches to treat cleft palate.


Turkish Journal of Medical Sciences | 2016

Apitherapy products enhance the recovery of CCL4-induced hepatic damages in rats.

Özlem Saral; Oktay Yildiz; Rezzan Aliyazicioğlu; Esin Yuluğ; Sinan Canpolat; Ferhat Ozturk; Sevgi Kolayli

BACKGROUND/AIM Our objective was to identify the antioxidant properties of honeybee products from Turkey, chestnut honey, pollen, propolis, and royal jelly, and their hepatoprotective activity against CCl4-induced hepatic damage in rats. MATERIALS AND METHODS Animals were fed with honeybee products for 7 days following CCl4 injection. Development of liver damage and oxidative stress were monitored by measuring the activities of the enzymes alanine transaminase, aspartate transaminase, malondialdehyde, superoxide dismutase, and catalase. Antioxidant capacities of the bee products were identified using FRAP and DPPH assays, as well as by measuring total phenolic and flavonoid contents. RESULTS The antioxidant activities of the honeybee products were highest in propolis, followed, in order, by pollen, honey, and royal jelly. Despite their different levels of antioxidant capacity, their roles in the prevention of liver damage induced by CCl4 were very similar, which can be explained through their bioavailability to the treated animals. CONCLUSIONS Our results suggest that honey, propolis, pollen, and royal jelly significantly enhanced the healing of CCl4-induced liver damage, partially due to their antioxidant properties and bioavailability.


Frontiers in Physiology | 2012

Implications of TGFβ on Transcriptome and Cellular Biofunctions of Palatal Mesenchyme

Xiujuan Zhu; Ferhat Ozturk; Sanjit Pandey; Chittibabu Guda; Ali Nawshad

Development of the palate comprises sequential stages of growth, elevation, and fusion of the palatal shelves. The mesenchymal component of palates plays a major role in early phases of palatogenesis, such as growth and elevation. Failure in these steps may result in cleft palate, the second most common birth defect in the world. These early stages of palatogenesis require precise and chronological orchestration of key physiological processes, such as growth, proliferation, differentiation, migration, and apoptosis. There is compelling evidence for the vital role of TGFβ-mediated regulation of palate development. We hypothesized that the isoforms of TGFβ regulate different cellular biofunctions of the palatal mesenchyme to various extents. Human embryonic palatal mesenchyme (HEPM) cells were treated with TGFβ1, β2, and β3 for microarray-based gene expression studies in order to identify the roles of TGFβ in the transcriptome of the palatal mesenchyme. Following normalization and modeling of 28,869 human genes, 566 transcripts were detected as differentially expressed in TGFβ-treated HEPM cells. Out of these altered transcripts, 234 of them were clustered in cellular biofunctions, including growth and proliferation, development, morphology, movement, cell cycle, and apoptosis. Biological interpretation and network analysis of the genes active in cellular biofunctions were performed using IPA. Among the differentially expressed genes, 11 of them are known to be crucial for palatogenesis (EDN1, INHBA, LHX8, PDGFC, PIGA, RUNX1, SNAI1, SMAD3, TGFβ1, TGFβ2, and TGFβR1). These genes were used for a merged interaction network with cellular behaviors. Overall, we have determined that more than 2% of human transcripts were differentially expressed in response to TGFβ treatment in HEPM cells. Our results suggest that both TGFβ1 and TGFβ2 orchestrate major cellular biofunctions within the palatal mesenchyme in vitro by regulating expression of 234 genes.


Nicotine & Tobacco Research | 2016

Nicotine Exposure During Pregnancy Results in Persistent Midline Epithelial Seam With Improper Palatal Fusion.

Ferhat Ozturk; Elizabeth Sheldon; Janki Sharma; Kemal Murat Canturk; Hasan H. Otu; Ali Nawshad

INTRODUCTION Nonsyndromic cleft palate is a common birth defect (1:700) with a complex etiology involving both genetic and environmental risk factors. Nicotine, a major teratogen present in tobacco products, was shown to cause alterations and delays in the developing fetus. METHODS To demonstrate the postpartum effects of nicotine on palatal development, we delivered three different doses of nicotine (1.5, 3.0, and 4.5mg/kg/d) and sterile saline (control) into pregnant BALB/c mice throughout their entire pregnancy using subcutaneous micro-osmotic pump. Dams were allowed to deliver (~day 21 of pregnancy) and neonatal assessments (weight, length, nicotine levels) were conducted, and palatal tissues were harvested for morphological and molecular analyses, as well as transcriptional profiling using microarrays. RESULTS Consistent administration of nicotine caused developmental retardation, still birth, low birth weight, and significant palatal size and shape abnormality and persistent midline epithelial seam in the pups. Through microarray analysis, we detected that 6232 genes were up-regulated and 6310 genes were down-regulated in nicotine-treated groups compared to the control. Moreover, 46% of the cleft palate-causing genes were found to be affected by nicotine exposure. Alterations of a subset of differentially expressed genes were illustrated with hierarchal clustering and a series of formal pathway analyses were performed using the bioinformatics tools. CONCLUSIONS We concluded that nicotine exposure during pregnancy interferes with normal growth and development of the fetus, as well results in persistent midline epithelial seam with type B and C patterns of palatal fusion. IMPLICATIONS Although there are several studies analyzing the genetic and environmental causes of palatal deformities, this study primarily shows the morphological and large-scale genomic outcomes of gestational nicotine exposure in neonatal mice palate.The previous version was incorrect. New authors Ali Nawshad, Hasan Otu, Janki Sharma, and Elizabeth Sheldon have been included in this version; the funding and acknowledgement sections have been updated accordingly; the article title, some text, and one supplementary data file have been edited; and the corresponding author has been changed. The original corresponding author regrets these earlier errors.


Journal of Gene Medicine | 2012

Expression levels of the PiT-2 receptor explain, in part, the gestational age-dependent alterations in transduction efficiency after in utero retroviral-mediated gene transfer

Ferhat Ozturk; Paul J. Park; Joseph Tellez; Evan Colletti; Maribeth V. Eiden; Graça Almeida-Porada; Christopher D. Porada

A fundamental obstacle to using retroviral‐mediated gene transfer (GT) to treat human diseases is the relatively low transduction levels that have been achieved in clinically relevant human cells. We previously showed that performing GT in utero overcomes this obstacle and results in significant levels of transduction within multiple fetal organs, with different tissues exhibiting optimal transduction at different developmental stages. We undertook the present study aiming to elucidate the mechanism for this age‐dependent transduction, testing the two factors that we hypothesized could be responsible: (i) the proliferative status of the tissue at the time of GT and (ii) the expression level of the amphotropic PiT‐2 receptor.


Nicotine & Tobacco Research | 2015

Nicotine Exposure during Pregnancy Results in Persistent MES with Type B and C Patterns of Palatal Fusion

Ferhat Ozturk; Kemal Murat Canturk

INTRODUCTION Nonsyndromic cleft palate is a common birth defect (1:700) with a complex etiology involving both genetic and environmental risk factors. Nicotine, a major teratogen present in tobacco products, was shown to cause alterations and delays in the developing fetus. METHODS To demonstrate the postpartum effects of nicotine on palatal development, we delivered three different doses of nicotine (1.5, 3.0, and 4.5mg/kg/d) and sterile saline (control) into pregnant BALB/c mice throughout their entire pregnancy using subcutaneous micro-osmotic pump. Dams were allowed to deliver (~day 21 of pregnancy) and neonatal assessments (weight, length, nicotine levels) were conducted, and palatal tissues were harvested for morphological and molecular analyses, as well as transcriptional profiling using microarrays. RESULTS Consistent administration of nicotine caused developmental retardation, still birth, low birth weight, and significant palatal size and shape abnormality and persistent midline epithelial seam in the pups. Through microarray analysis, we detected that 6232 genes were up-regulated and 6310 genes were down-regulated in nicotine-treated groups compared to the control. Moreover, 46% of the cleft palate-causing genes were found to be affected by nicotine exposure. Alterations of a subset of differentially expressed genes were illustrated with hierarchal clustering and a series of formal pathway analyses were performed using the bioinformatics tools. CONCLUSIONS We concluded that nicotine exposure during pregnancy interferes with normal growth and development of the fetus, as well results in persistent midline epithelial seam with type B and C patterns of palatal fusion. IMPLICATIONS Although there are several studies analyzing the genetic and environmental causes of palatal deformities, this study primarily shows the morphological and large-scale genomic outcomes of gestational nicotine exposure in neonatal mice palate.The previous version was incorrect. New authors Ali Nawshad, Hasan Otu, Janki Sharma, and Elizabeth Sheldon have been included in this version; the funding and acknowledgement sections have been updated accordingly; the article title, some text, and one supplementary data file have been edited; and the corresponding author has been changed. The original corresponding author regrets these earlier errors.


Nicotine & Tobacco Research | 2015

Nicotine Exposure During Pregnancy Results in Persistent Midline Epithelial Seam With Type B and C Patterns of Palatal Fusion

Ferhat Ozturk; Kemal Murat Canturk

INTRODUCTION Nonsyndromic cleft palate is a common birth defect (1:700) with a complex etiology involving both genetic and environmental risk factors. Nicotine, a major teratogen present in tobacco products, was shown to cause alterations and delays in the developing fetus. METHODS To demonstrate the postpartum effects of nicotine on palatal development, we delivered three different doses of nicotine (1.5, 3.0, and 4.5mg/kg/d) and sterile saline (control) into pregnant BALB/c mice throughout their entire pregnancy using subcutaneous micro-osmotic pump. Dams were allowed to deliver (~day 21 of pregnancy) and neonatal assessments (weight, length, nicotine levels) were conducted, and palatal tissues were harvested for morphological and molecular analyses, as well as transcriptional profiling using microarrays. RESULTS Consistent administration of nicotine caused developmental retardation, still birth, low birth weight, and significant palatal size and shape abnormality and persistent midline epithelial seam in the pups. Through microarray analysis, we detected that 6232 genes were up-regulated and 6310 genes were down-regulated in nicotine-treated groups compared to the control. Moreover, 46% of the cleft palate-causing genes were found to be affected by nicotine exposure. Alterations of a subset of differentially expressed genes were illustrated with hierarchal clustering and a series of formal pathway analyses were performed using the bioinformatics tools. CONCLUSIONS We concluded that nicotine exposure during pregnancy interferes with normal growth and development of the fetus, as well results in persistent midline epithelial seam with type B and C patterns of palatal fusion. IMPLICATIONS Although there are several studies analyzing the genetic and environmental causes of palatal deformities, this study primarily shows the morphological and large-scale genomic outcomes of gestational nicotine exposure in neonatal mice palate.The previous version was incorrect. New authors Ali Nawshad, Hasan Otu, Janki Sharma, and Elizabeth Sheldon have been included in this version; the funding and acknowledgement sections have been updated accordingly; the article title, some text, and one supplementary data file have been edited; and the corresponding author has been changed. The original corresponding author regrets these earlier errors.

Collaboration


Dive into the Ferhat Ozturk's collaboration.

Top Co-Authors

Avatar

Ali Nawshad

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Porada

Wake Forest Institute for Regenerative Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graça Almeida-Porada

Wake Forest Institute for Regenerative Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiujuan Zhu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chittibabu Guda

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge