Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernán Agüero is active.

Publication


Featured researches published by Fernán Agüero.


Nature Reviews Drug Discovery | 2008

Genomic-scale prioritization of drug targets: the TDR Targets database

Fernán Agüero; Bissan Al-Lazikani; Martin Aslett; Matthew Berriman; Frederick S. Buckner; Robert K. Campbell; Santiago J. Carmona; Ian M. Carruthers; A.W. Edith Chan; Feng Chen; Gregory J. Crowther; Maria A. Doyle; Christiane Hertz-Fowler; Andrew L. Hopkins; Gregg McAllister; Solomon Nwaka; John P. Overington; Arnab Pain; Gaia V. Paolini; Ursula Pieper; Stuart A. Ralph; Aaron Riechers; David S. Roos; Andrej Sali; Dhanasekaran Shanmugam; Takashi Suzuki; Wesley C. Van Voorhis; Christophe L. M. J. Verlinde

The increasing availability of genomic data for pathogens that cause tropical diseases has created new opportunities for drug discovery and development. However, if the potential of such data is to be fully exploited, the data must be effectively integrated and be easy to interrogate. Here, we discuss the development of the TDR Targets database (http://tdrtargets.org), which encompasses extensive genetic, biochemical and pharmacological data related to tropical disease pathogens, as well as computationally predicted druggability for potential targets and compound desirability information. By allowing the integration and weighting of this information, this database aims to facilitate the identification and prioritization of candidate drug targets for pathogens.


Infection and Immunity | 2005

Whole-genome analyses of speciation events in pathogenic Brucellae.

Patrick Chain; Diego J. Comerci; Marcelo E. Tolmasky; Frank W. Larimer; Stephanie Malfatti; Lisa M. Vergez; Fernán Agüero; Miriam Land; Rodolfo A. Ugalde; Emilio Garcia

ABSTRACT Despite their high DNA identity and a proposal to group classical Brucella species as biovars of Brucella melitensis, the commonly recognized Brucella species can be distinguished by distinct biochemical and fatty acid characters, as well as by a marked host range (e.g., Brucella suis for swine, B. melitensis for sheep and goats, and Brucella abortus for cattle). Here we present the genome of B. abortus 2308, the virulent prototype biovar 1 strain, and its comparison to the two other human pathogenic Brucella species and to B. abortus field isolate 9-941. The global distribution of pseudogenes, deletions, and insertions supports previous indications that B. abortus and B. melitensis share a common ancestor that diverged from B. suis. With the exception of a dozen genes, the genetic complements of both B. abortus strains are identical, whereas the three species differ in gene content and pseudogenes. The pattern of species-specific gene inactivations affecting transcriptional regulators and outer membrane proteins suggests that these inactivations may play an important role in the establishment of host specificity and may have been a primary driver of speciation in the genus Brucella. Despite being nonmotile, the brucellae contain flagellum gene clusters and display species-specific flagellar gene inactivations, which lead to the putative generation of different versions of flagellum-derived structures and may contribute to differences in host specificity and virulence. Metabolic changes such as the lack of complete metabolic pathways for the synthesis of numerous compounds (e.g., glycogen, biotin, NAD, and choline) are consistent with adaptation of brucellae to an intracellular life-style.


PLOS Neglected Tropical Diseases | 2010

Identification of Attractive Drug Targets in Neglected-Disease Pathogens Using an In Silico Approach

Gregory J. Crowther; Dhanasekaran Shanmugam; Santiago J. Carmona; Maria A. Doyle; Christiane Hertz-Fowler; Matthew Berriman; Solomon Nwaka; Stuart A. Ralph; David S. Roos; Wesley C. Van Voorhis; Fernán Agüero

Background The increased sequencing of pathogen genomes and the subsequent availability of genome-scale functional datasets are expected to guide the experimental work necessary for target-based drug discovery. However, a major bottleneck in this has been the difficulty of capturing and integrating relevant information in an easily accessible format for identifying and prioritizing potential targets. The open-access resource TDRtargets.org facilitates drug target prioritization for major tropical disease pathogens such as the mycobacteria Mycobacterium leprae and Mycobacterium tuberculosis; the kinetoplastid protozoans Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi; the apicomplexan protozoans Plasmodium falciparum, Plasmodium vivax, and Toxoplasma gondii; and the helminths Brugia malayi and Schistosoma mansoni. Methodology/Principal Findings Here we present strategies to prioritize pathogen proteins based on whether their properties meet criteria considered desirable in a drug target. These criteria are based upon both sequence-derived information (e.g., molecular mass) and functional data on expression, essentiality, phenotypes, metabolic pathways, assayability, and druggability. This approach also highlights the fact that data for many relevant criteria are lacking in less-studied pathogens (e.g., helminths), and we demonstrate how this can be partially overcome by mapping data from homologous genes in well-studied organisms. We also show how individual users can easily upload external datasets and integrate them with existing data in TDRtargets.org to generate highly customized ranked lists of potential targets. Conclusions/Significance Using the datasets and the tools available in TDRtargets.org, we have generated illustrative lists of potential drug targets in seven tropical disease pathogens. While these lists are broadly consistent with the research communitys current interest in certain specific proteins, and suggest novel target candidates that may merit further study, the lists can easily be modified in a user-specific manner, either by adjusting the weights for chosen criteria or by changing the criteria that are included.


Nucleic Acids Research | 2012

TDR Targets: a chemogenomics resource for neglected diseases

María P. Magariños; Santiago J. Carmona; Gregory J. Crowther; Stuart A. Ralph; David S. Roos; Dhanasekaran Shanmugam; Wesley C. Van Voorhis; Fernán Agüero

The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context.


Molecular and Biochemical Parasitology | 2003

Characterization of a lysosomal serine carboxypeptidase from Trypanosoma cruzi

Fabiola Parussini; Mayra Garcı́a; Juan Mucci; Fernán Agüero; Daniel O. Sánchez; Ulf Hellman; Lena Åslund; Juan José Cazzulo

Trypanosoma cruzi, the flagellate protozoan which is the causative agent of the American trypanosomiasis, Chagas disease has carboxypeptidase activity. The enzyme has been purified to protein homogeneity, and shown to be a lysosomal monomeric glycoprotein with a molecular mass of about 54kDa. The enzyme has an optimum acidic pH (4.5 with furyl acryloyl-Phe-Phe as substrate), is highly specific for hydrophobic C-terminal amino acid residues, and is strongly inhibited by 3,4-dichloroisocoumarin (IC(50) value 0.3 microM). The enzyme is encoded by a number of genes arrayed in head-to-tail tandems; one of these genes has been cloned and sequenced. Sequence comparisons indicate that the enzyme belongs to the C group of serine carboxypeptidases, within the S10 serine peptidase family, and shows the higher similarity to plant and yeast enzymes. The residues involved in catalysis and most of those involved in substrate binding are conserved in the T. cruzi enzyme as well as 8 out of 10 Cys residues known to be involved in disulfide bridges in the yeast enzyme. This is the first report of an S10 family enzyme in trypanosomatids. The presence of serine carboxypeptidases is not restricted to T. cruzi, being possibly a general character of trypanosomatids.


Infection and Immunity | 2001

Gene discovery through genomic sequencing of Brucella abortus.

Daniel O. Sánchez; Rubén O. Zandomeni; Silvio Cravero; Ramiro E. Verdún; Ester Pierrou; Paula Faccio; Gabriela Diaz; Silvia Lanzavecchia; Fernán Agüero; Alberto C.C. Frasch; Siv G. E. Andersson; Osvaldo Rossetti; Oscar Grau; Rodolfo A. Ugalde

ABSTRACT Brucella abortus is the etiological agent of brucellosis, a disease that affects bovines and human. We generated DNA random sequences from the genome of B. abortus strain 2308 in order to characterize molecular targets that might be useful for developing immunological or chemotherapeutic strategies against this pathogen. The partial sequencing of 1,899 clones allowed the identification of 1,199 genomic sequence surveys (GSSs) with high homology (BLAST expect value < 10−5) to sequences deposited in the GenBank databases. Among them, 925 represent putative novel genes for the Brucella genus. Out of 925 nonredundant GSSs, 470 were classified in 15 categories based on cellular function. Seven hundred GSSs showed no significant database matches and remain available for further studies in order to identify their function. A high number of GSSs with homology toAgrobacterium tumefaciens and Rhizobium meliloti proteins were observed, thus confirming their close phylogenetic relationship. Among them, several GSSs showed high similarity with genes related to nodule nitrogen fixation, synthesis of nod factors, nodulation protein symbiotic plasmid, and nodule bacteroid differentiation. We have also identified severalB. abortus homologs of virulence and pathogenesis genes from other pathogens, including a homolog to both the Shda gene fromSalmonella enterica serovar Typhimurium and the AidA-1 gene from Escherichia coli. Other GSSs displayed significant homologies to genes encoding components of the type III and type IV secretion machineries, suggesting that Brucella might also have an active type III secretion machinery.


BMC Microbiology | 2009

Genomic analysis of Campylobacter fetus subspecies: identification of candidate virulence determinants and diagnostic assay targets

P. Moolhuijzen; A.E. Lew-Tabor; Bartosz M Wlodek; Fernán Agüero; Diego J. Comerci; Rodolfo A. Ugalde; Daniel O. Sánchez; R. Appels; M. Bellgard

BackgroundCampylobacter fetus subspecies venerealis is the causative agent of bovine genital campylobacteriosis, asymptomatic in bulls the disease is spread to female cattle causing extensive reproductive loss. The microbiological and molecular differentiation of C. fetus subsp. venerealis from C. fetus subsp. fetus is extremely difficult. This study describes the analysis of the available C. fetus subsp. venerealis AZUL-94 strain genome (~75–80%) to identify elements exclusively found in C. fetus subsp. venerealis strains as potential diagnostic targets and the characterisation of subspecies virulence genes.ResultsEighty Kb of genomic sequence (22 contigs) was identified as unique to C. fetus subsp. venerealis AZUL-94 and consisted of type IV secretory pathway components, putative plasmid genes and hypothetical proteins. Of the 9 PCR assays developed to target C. fetus subsp. venerealis type IV secretion system genes, 4 of these were specific for C. fetus subsp. venerealis biovar venerealis and did not detect C. fetus subsp. venerealis biovar intermedius. Two assays were specific for C. fetus subsp. venerealis AZUL-94 strain, with a further single assay specific for the AZUL-94 strain and C. fetus subsp. venerealis biovar intermedius (and not the remaining C. fetus subsp. venerealis biovar venerealis strains tested). C. fetus subsp. fetus and C. fetus subsp. venerealis were found to share most common Campylobacter virulence factors such as SAP, chemotaxis, flagellar biosynthesis, 2-component systems and cytolethal distending toxin subunits (A, B, C). We did not however, identify in C. fetus the full complement of bacterial adherence candidates commonly found in other Campylobacter spp.ConclusionThe comparison of the available C. fetus subsp. venerealis genome sequence with the C. fetus subsp. fetus genome identified 80 kb of unique C. fetus subsp. venerealis AZUL94 sequence, with subsequent PCR confirmation demonstrating inconsistent amplification of these targets in all other C. fetus subsp. venerealis strains and biovars tested. The assays developed here highlight the complexity of targeting strain specific virulence genes for field studies for the molecular identification and epidemiology of C. fetus.


Journal of Neuroscience Research | 2004

Gene expression analysis in the hippocampal formation of tree shrews chronically treated with cortisol

Julieta Alfonso; Fernán Agüero; Daniel O. Sánchez; Gabriele Flügge; Eberhard Fuchs; Alberto C.C. Frasch; Guido D. Pollevick

Adrenal corticosteroids influence the function of the hippocampus, the brain structure in which the highest expression of glucocorticoid receptors is found. Chronic high levels of cortisol elicited by stress or through exogenous administration can cause irreversible damage and cognitive deficits. In this study, we searched for genes expressed in the hippocampal formation after chronic cortisol treatment in male tree shrews. Animals were treated orally with cortisol for 28 days. At the end of the experiments, we generated two subtractive hippocampal hybridization libraries from which we sequenced 2,246 expressed sequenced tags (ESTs) potentially regulated by cortisol. To validate this approach further, we selected some of the candidate clones to measure mRNA expression levels in hippocampus using real‐time PCR. We found that 66% of the sequences tested (10 of 15) were differentially represented between cortisol‐treated and control animals. The complete set of clones was subjected to a bioinformatic analysis, which allowed classification of the ESTs into four different main categories: 1) known proteins or genes (∼28%), 2) ESTs previously published in the database (∼16%), 3) novel ESTs matching only the reference human or mouse genome (∼5%), and 4) sequences that do not match any public database (50%). Interestingly, the last category was the most abundant. Hybridization assays revealed that several of these clones are indeed expressed in hippocampal tissue from tree shrew, human, and/or rat. Therefore, we discovered an extensive inventory of new molecular targets in the hippocampus that serves as a reference for hippocampal transcriptional responses under various conditions. Finally, a detailed analysis of the genomic localization in human and mouse genomes revealed a survey of putative novel splicing variants for several genes of the nervous system.


Molecular & Cellular Proteomics | 2015

Towards high-throughput immunomics for infectious diseases: use of next-generation peptide microarrays for rapid discovery and mapping of antigenic determinants

Santiago J. Carmona; Morten Nielsen; Claus Schafer-Nielsen; Juan Mucci; Jaime Altcheh; Virginia Balouz; Valeria Tekiel; Alberto C.C. Frasch; Oscar Campetella; Carlos A. Buscaglia; Fernán Agüero

Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens.


Biochemical Journal | 2011

Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins

Ivana Urban; Lucía Boiani Santurio; Agustina Chidichimo; Hai Yu; Xi Chen; Juan Mucci; Fernán Agüero; Carlos A. Buscaglia

The surface of the protozoan Trypanosoma cruzi is covered by a dense coat of mucin-type glycoconjugates, which make a pivotal contribution to parasite protection and host immune evasion. Their importance is further underscored by the presence of >1000 mucin-like genes in the parasite genome. In the present study we demonstrate that one such group of genes, termed TcSMUG L, codes for previously unrecognized mucin-type glycoconjugates anchored to and secreted from the surface of insect-dwelling epimastigotes. These features are supported by the in vivo tracing and characterization of endogenous TcSMUG L products and recombinant tagged molecules expressed by transfected parasites. Besides displaying substantial homology to TcSMUG S products, which provide the scaffold for the major Gp35/50 mucins also present in insect-dwelling stages of the T. cruzi lifecycle, TcSMUG L products display unique structural and functional features, including being completely refractory to sialylation by parasite trans-sialidases. Although quantitative real time-PCR and gene sequencing analyses indicate a high degree of genomic conservation across the T. cruzi species, TcSMUG L product expression and processing is quite variable among different parasite isolates.

Collaboration


Dive into the Fernán Agüero's collaboration.

Top Co-Authors

Avatar

Santiago J. Carmona

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Daniel O. Sánchez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos A. Buscaglia

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Alberto C.C. Frasch

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

David S. Roos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dhanasekaran Shanmugam

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Juan José Cazzulo

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Mucci

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge