Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernanda Caroline Carvalho is active.

Publication


Featured researches published by Fernanda Caroline Carvalho.


Glycoconjugate Journal | 2013

The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties

Maria Aparecida de Souza; Fernanda Caroline Carvalho; Luciana Pereira Ruas; Rafael Ricci-Azevedo; Maria Cristina Roque-Barreira

Advances in the glycobiology and immunology fields have provided many insights into the role of carbohydrate-protein interactions in the immune system. We aim to present a comprehensive review of the effects that some plant lectins exert as immunomodulatory agents, showing that they are able to positively modify the immune response to certain pathological conditions, such as cancer and infections. The present review comprises four main themes: (1) an overview of plant lectins that exert immunomodulatory effects and the mechanisms accounting for these activities; (2) general characteristics of the immunomodulatory lectin ArtinM from the seeds of Artocarpus heterophyllus; (3) activation of innate immunity cells by ArtinM and consequent induction of Th1 immunity; (4) resistance conferred by ArtinM administration in infections with intracellular pathogens, such as Leishmania (Leishmania) major, Leishmania (Leishmania) amazonensis, and Paracoccidioides brasiliensis. We believe that this review will be a valuable resource for more studies in this relatively neglected area of research, which has the potential to reveal carbohydrate targets for novel prophylactic and therapeutic strategies.


PLOS ONE | 2010

Immunological Basis for the Gender Differences in Murine Paracoccidioides brasiliensis Infection

Camila F. Pinzan; Luciana Pereira Ruas; Anália Sulamita Casabona-Fortunato; Fernanda Caroline Carvalho; Maria Cristina Roque-Barreira

This study aimed to investigate the immunological mechanisms involved in the gender distinct incidence of paracoccidioidomycosis (pcm), an endemic systemic mycosis in Latin America, which is at least 10 times more frequent in men than in women. Then, we compared the immune response of male and female mice to Paracoccidioides brasiliensis infection, as well as the influence in the gender differences exerted by paracoccin, a P. brasiliensis component with carbohydrate recognition property. High production of Th1 cytokines and T-bet expression have been detected in the paracoccin stimulated cultures of spleen cells from infected female mice. In contrast, in similar experimental conditions, cells from infected males produced higher levels of the Th2 cytokines and expressed GATA-3. Macrophages from male and female mice when stimulated with paracoccin displayed similar phagocytic capability, while fungicidal activity was two times more efficiently performed by macrophages from female mice, a fact that was associated with 50% higher levels of nitric oxide production. In order to evaluate the role of sexual hormones in the observed gender distinction, we have utilized mice that have been submitted to gonadectomy followed by inverse hormonal reconstitution. Spleen cells derived from castrated males reconstituted with estradiol have produced higher levels of IFN-γ (1291±15 pg/mL) and lower levels of IL-10 (494±38 pg/mL), than normal male in response to paracoccin stimulus. In contrast, spleen cells from castrated female mice that had been treated with testosterone produced more IL-10 (1284±36 pg/mL) and less IFN-γ (587±14 pg/mL) than cells from normal female. In conclusion, our results reveal that the sexual hormones had a profound effect on the biology of immune cells, and estradiol favours protective responses to P. brasiliensis infection. In addition, fungal components, such as paracoccin, may provide additional support to the gender dimorphic immunity that marks P. brasiliensis infection.


Biosensors and Bioelectronics | 2014

Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity

Adriano Santos; Fernanda Caroline Carvalho; Maria-Cristina Roque-Barreira; Paulo Roberto Bueno

Characterization of lectin-carbohydrate binding using label-free methods such as impedance-derived electrochemical capacitance spectroscopy (ECS) is desirable to evaluate specific interactions, for example, ArtinM lectin and horseradish peroxidase (HRP) glycoprotein, used here as a model for protein-carbohydrate binding affinity. An electroactive molecular film comprising alkyl ferrocene as a redox probe and ArtinM as a carbohydrate receptive center to target HRP was successfully used to determine the binding affinity between ArtinM and HRP. The redox capacitance, a transducer signal associated with the alkyl ferrocene centers, was obtained by ECS and used in the Langmuir adsorption model to obtain the affinity constant (1.6±0.6)×10(8) L mol(-1). The results shown herein suggest the feasibility of ECS application for lectin glycoarray characterization.


PLOS ONE | 2011

The Recognition of N-Glycans by the Lectin ArtinM Mediates Cell Death of a Human Myeloid Leukemia Cell Line

Fernanda Caroline Carvalho; Sandro Gomes Soares; Mirela de Barros Tamarozzi; Eduardo M. Rego; Maria-Cristina Roque-Barreira

ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment.


Wound Repair and Regeneration | 2013

Topical application of the lectin Artin M accelerates wound healing in rat oral mucosa by enhancing TGF-β and VEGF production

Yeon Jung Kim; Fernanda Caroline Carvalho; João Antonio Chaves de Souza; Pedro César Garcia Gonçalves; Andressa Vilas Boas Nogueira; Luis Carlos Spolidório; Maria Cristina Roque-Barreira; Joni Augusto Cirelli

The lectin Artin M has been shown to accelerate the wound‐healing process. The aims of this study were to evaluate the effects of Artin M on wound healing in the palatal mucosa of rats and to investigate the effects of Artin M on transforming growth factor beta (TGF‐β) and vascular endothelial growth factor (VEGF) secretion by rat gingival fibroblasts. A surgical wound was created on the palatal mucosa of 72 rats divided into three groups according to treatment: C—Control (nontreated), A—Artin M gel, and V—Vehicle. Eight animals per group were sacrificed at 3, 5, and 7 days postsurgery for histology, immunohistochemistry and determination of the levels of cytokines, and growth factors. Gingival fibroblasts were incubated with 2.5 μg/mL of Artin M for 24, 48, and 72 hours. The expression of VEGF and TGF‐β was determined by enzyme‐linked immunosorbent assay. Histologically, at day 7, the Artin M group showed earlier reepithelialization, milder inflammatory infiltration, and increased collagen fiber formation, resulting in faster maturation of granular tissue than in the other groups (p < 0.05). Artin M–induced cell proliferation in vivo and promoted a greater expression of TGF‐β and VEGF in both experiments (p < 0.05). Artin M was effective in healing oral mucosa wounds in rats and was associated with increased TGF‐β and VEGF release, cell proliferation, reepithelialization, and collagen deposition and arrangement of fibers.


PLOS ONE | 2014

Eutirucallin, a RIP-2 Type Lectin from the Latex of Euphorbia tirucalli L. Presents Proinflammatory Properties

Sanzio Silva Santana; Margareth Leitão Gennari-Cardoso; Fernanda Caroline Carvalho; Maria Cristina Roque-Barreira; André da Silva Santiago; Fatima Cerqueira Alvim; Carlos Priminho Pirovani

Lectins are carbohydrate-binding proteins that recognize and modulate physiological activities and have been used as a toll for detection and identification of biomolecules, and therapy of diseases. In this study we have isolated a lectin present in the latex of Euphorbia tirucalli, and named it Eutirucallin. The latex protein extract was subjected to ion exchange chromatography and showed two peaks with haemagglutinating activity. Polypeptides of 32 kDa protein extract strongly interacted with immobilized galactose (α-lactose > D-N-acetylgalactosamine). The Eutirucallin was obtained with a yield of 5.6% using the α-lactose column. The lectin domain has 32 kDa subunits and at least two of which are joined by disulfide bridges. The agglutinating capacity for human erythrocytes A+, B+ and O+ is inhibited by D-galactose. The haemagglutinating activity of Eutirucallin was independent of Ca2+ and maintained until the temperature of 55°C. Eutirucallin presented biological activities such as neutrophils recruitment and cytokine prodution by macrophages. The analysis of the trypsin-digested Eutirucallin by ms/ms in ESI-Q-TOFF resulted in nine peptides similar to type 2 ribosome-inactivating protein (type-2 RIP). Its partial sequence showed a similarity of 67.4 – 83.1% for the lectin domain of type-2 RIP [Ricin and Abrin (83.1%), Viscumin, Ebulin, Pulchellin, Cinnamomin, Volkensin and type-2 RIP Iris hollandica]. Our data suggest that Eutirucallin is a new member of type 2 ribosome-inactivating protein and presents biotechnological potential.


PLOS Neglected Tropical Diseases | 2016

Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major

Rafael Ricci-Azevedo; Aline F. Oliveira; Marina Cavalcanti Albuquerque Veiga Conrado; Fernanda Caroline Carvalho; Maria Cristina Roque-Barreira

ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1) immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS), form neutrophil extracellular traps (NETs) and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF) and interleukin-1beta (IL-1β) release; otherwise, transforming growth factor-beta (TGF-β) production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be considered an appropriate molecular template for the construction of an efficient anti-infective agent.


Inflammation and Allergy - Drug Targets | 2012

Neutrophil Activation Induced by Plant Lectins: Modulation of Inflammatory Processes

Gabriela Pereira-da-Silva; Fernanda Caroline Carvalho; Maria Cristina Roque-Barreira

Lectins are ubiquitous proteins that exhibit selective and reversible carbohydrate-binding activities, and have become increasingly known as cell recognition mediators in a wide range of biological systems. Besides being useful tools in the study of underlying mechanisms involved in inflammation, lectins have also emerged as suitable molecules for pharmaceutical applications. Since the discovery that mammalian lectins exert crucial roles in neutrophil adhesion, mobilization, and activation, the experimental use of lectins from exogenous sources, such as plants, as modulators of leukocyte functions has been considered. Indeed, specific mammalian cell responses triggered by different plant lectins have contributed to delineation of the signaling mechanisms underlying cell adhesion, intracellular activation, and modulation of cell responses. This review presents a comprehensive summary of research concerning the effects of plant lectins on the main physiological activities of neutrophils, such as migration, degranulation, release of inflammatory mediators, phagocytosis, and apoptosis. The reports included herein illustrate the modulation of inflammatory processes by plant lectins.


PLOS ONE | 2011

Influence of N-glycosylation on the morphogenesis and growth of Paracoccidioides brasiliensis and on the biological activities of yeast proteins.

Fausto Almeida; Fernanda Caroline Carvalho; Vânia Sammartino Mariano; Ana Alegre; Roberto Nascimento Silva; Ebert Seixas Hanna; Maria Cristina Roque-Barreira

The fungus Paracoccidioides brasiliensis is a human pathogen that causes paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. The cell wall of P. brasiliensis is a network of glycoproteins and polysaccharides, such as chitin, that perform several functions. N-linked glycans are involved in glycoprotein folding, intracellular transport, secretion, and protection from proteolytic degradation. Here, we report the effects of tunicamycin (TM)-mediated inhibition of N-linked glycosylation on P. brasiliensis yeast cells. The underglycosylated yeasts were smaller than their fully glycosylated counterparts and exhibited a drastic reduction of cell budding, reflecting impairment of growth and morphogenesis by TM treatment. The intracellular distribution in TM-treated yeasts of the P. brasiliensis glycoprotein paracoccin was investigated using highly specific antibodies. Paracoccin was observed to accumulate at intracellular locations, far from the yeast wall. Paracoccin derived from TM-treated yeasts retained the ability to bind to laminin despite their underglycosylation. As paracoccin has N-acetyl-β-d-glucosaminidase (NAGase) activity and induces the production of TNF-α and nitric oxide (NO) by macrophages, we compared these properties between glycosylated and underglycosylated yeast proteins. Paracoccin demonstrated lower NAGase activity when underglycosylated, although no difference was detected between the pH and temperature optimums of the two forms. Murine macrophages stimulated with underglycosylated yeast proteins produced significantly lower levels of TNF-α and NO. Taken together, the impaired growth and morphogenesis of tunicamycin-treated yeasts and the decreased biological activities of underglycosylated fungal components suggest that N-glycans play important roles in P. brasiliensis yeast biology.


Frontiers in Microbiology | 2012

ArtinM offers new perspectives in the development of antifungal therapy

Luciana Pereira Ruas; Fernanda Caroline Carvalho; Maria-Cristina Roque-Barreira

The thermally dimorphic fungus Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis (PCM), the most frequent systemic mycosis that affects the rural populations in Latin America. Despite significant developments in antifungal chemotherapy, its efficacy remains limited since drug therapy is prolonged and associated with toxic side effects and relapses. In response to these challenges, it is now recognized that several aspects of antifungal immunity can be modulated to better deal with fungal infections. A common idea for halting fungal infections has been the need to activate a cell-based, pro-inflammatory Th1 immune response to improve the fungal elimination. ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has the property of modulating immunity against several intracellular pathogens. Here, we review the immunomodulatory activity of ArtinM during experimental PCM in mice. Both prophylactic and therapeutic protocols of ArtinM administration promotes a Th1 immune response balanced by IL-10, which outstandingly reduces the fungal load in organs of the treated mice while maintaining a controlled inflammation at the site of infection. A carbohydrate recognition-based interaction of ArtinM with Toll-like receptor 2 (TLR2) accounts for initiating the immunomodulatory effect of the lectin. The precise identification of the TLR2 N-glycan(s) targeted by ArtinM may support novel basis for the development of antifungal therapy.

Collaboration


Dive into the Fernanda Caroline Carvalho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ten Feizi

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Yan Liu

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge