Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernanda Gentil is active.

Publication


Featured researches published by Fernanda Gentil.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2011

The Influence of the Mechanical Behaviour of the Middle Ear Ligaments: A Finite Element Analysis:

Fernanda Gentil; Marco Parente; Pedro Martins; Carolina Garbe; Renato Natal M. Jorge; A.J.M. Ferreira; João Manuel R. S. Tavares

The interest in computer modelling of biomechanical systems, mainly by using the finite element method (FEM), has been increasing, in particular for analysis of the mechanical behaviour of the human ear. In this work, a finite element model of the middle ear was developed to study the dynamic structural response to harmonic vibrations for distinct sound pressure levels applied on the eardrum. The model includes different ligaments and muscle tendons with elastic and hyperelastic behaviour for these supportive structures. Additionally, the nonlinear behaviour of the ligaments and muscle tendons was investigated, as they are the connection between ossicles by contact formulation. Harmonic responses of the umbo and stapes footplate displacements, between 100 Hz and 100 kHz, were obtained and compared with previously published work. The stress state of ligaments (superior, lateral, and anterior of malleus and superior and posterior of incus) was analysed, with the focus on balance of the supportive structures of the middle ear, as ligaments make the link between the ossicular chain and the walls of the tympanic cavity. The results obtained in this work highlight the importance of using hyperelastic models to simulate the mechanical behaviour for the ligaments and tendons.


Computer Methods in Biomechanics and Biomedical Engineering | 2013

The influence of muscles activation on the dynamical behaviour of the tympano-ossicular system of the middle ear

Fernanda Gentil; Marco Parente; P.A.L.S. Martins; Carolina Garbe; João Paço; A.J.M. Ferreira; João Manuel R. S. Tavares; Renato Natal Jorge

The human ear is a complex biomechanical system and is divided into three parts: outer, middle and inner ear. The middle ear is formed by ossicles (malleus, incus and stapes), ligaments, muscles and tendons, which transfers sound vibrations from the eardrum to the inner ear, linking with mastoid and Eustachian tube. In this work, a finite element modelling of the tympano-ossicular system of the middle ear was developed. A dynamic study based on a structural response to harmonic vibrations, for a sound pressure level (SPL) of 110, 120 and 130 dB SPL applied in the eardrum, is presented. The connection between the ossicles is made using a contact formulation. The model includes the different ligaments considering its hyperelastic behaviour. The activation of the muscles is based on the constitutive model proposed by previous work. The harmonic responses of displacement and pressure obtained on the stapes footplate, for a frequency range between 100 Hz and 10 kHz, are obtained simulating the muscle activation. The results are compared considering the passive and active states. The results are discussed and they are in accordance with audiological data published with reference to the effects of the middle ear muscles contraction.


Computer Methods in Biomechanics and Biomedical Engineering | 2014

Segmentation algorithms for ear image data towards biomechanical studies

Ana Ferreira; Fernanda Gentil; João Manuel R. S. Tavares

In recent years, the segmentation, i.e. the identification, of ear structures in video-otoscopy, computerised tomography (CT) and magnetic resonance (MR) image data, has gained significant importance in the medical imaging area, particularly those in CT and MR imaging. Segmentation is the fundamental step of any automated technique for supporting the medical diagnosis and, in particular, in biomechanics studies, for building realistic geometric models of ear structures. In this paper, a review of the algorithms used in ear segmentation is presented. The review includes an introduction to the usually biomechanical modelling approaches and also to the common imaging modalities. Afterwards, several segmentation algorithms for ear image data are described, and their specificities and difficulties as well as their advantages and disadvantages are identified and analysed using experimental examples. Finally, the conclusions are presented as well as a discussion about possible trends for future research concerning the ear segmentation.


Journal of Mechanics in Medicine and Biology | 2014

ANALYSIS OF EARDRUM PATHOLOGIES USING THE FINITE ELEMENT METHOD

Fernanda Gentil; Carolina Garbe; Marco Parente; Pedro Martins; A.J.M. Ferreira; Renato Natal Jorge; Carla Santos; João Paço

This work investigates the effect of eardrum perforations and myringosclerosis in the mechanical behavior of the tympano-ossicular chain. A 3D model for the tympano-ossicular chain was created and different numerical simulations were made, using the finite element method. For the eardrum perforations, three different calibers of perforated eardrums were simulated. For the micro perforation (0.6 mm of diameter) no differences were observed between the perforated and normal eardrum. For the numerical simulation of the eardrum with the largest perforation caliber, small displacements were obtained in the stapes footplate, when compared with the model representative of normal ossicular-chain, at low frequencies, which is related with major hearing loss in this frequency range. For the numerical simulations of myringosclerosis, the larger differences in the displacement field between the normal and modified model were obtained in the umbo. When observing the results in the stapes footplate, there were no significant differences between the two models, which is in accordance to the clinical data. When simulating an eardrum perforation along with myringosclerosis, there is a decrease in the displacements, both from the umbo and the central part of the stapes footplate, often associated with a pronounced hearing loss. It could be concluded that the reduced displacement of the stapes footplate may be related to a greater hearing loss.


International Journal for Numerical Methods in Biomedical Engineering | 2014

The biomechanical effects of stapes replacement by prostheses on the tympano-ossicular chain

Fernanda Gentil; Carolina Garbe; Marco Parente; P.A.L.S. Martins; Carla Santos; Eurico Almeida; Renato Natal Jorge

Hearing is a sequence of processes in which the ear translates sound waves into electrical signals, which are then sent to the brain where they are interpreted as sound. The ossicular chain of the middle ear is formed by three ossicles (malleus, incus, and stapes), of which the last and smallest, the stapes, vibrates, thus communicating with the inner ear through the stapes footplate. When abnormal bone formation immobilizes the stapes (otosclerosis), the passage of sound does not correctly occur and hearing can be compromised. In most cases, surgery is an option for its treatment. The stapes is totally or partially replaced by a prosthesis (stapedectomy or stapedotomy, respectively) allowing the passage of sound to the inner ear. This work presents a study on the behavior of different stapes prostheses, considering their biomechanical characteristics. The stapes was replaced by different prostheses, made of dissimilar materials: stainless steel, teflon, and titanium. The umbo and stapes footplate displacements for the models with these prostheses were obtained and compared with the displacements obtained with the model representative of the normal ear. In the models with prostheses, the displacements are found in the hole where the prosthesis is attached.


Acta of Bioengineering and Biomechanics | 2017

An alternative 3D numerical method to study the biomechanical behaviour of the human inner ear semicircular canal

Carla F. Santos; J. Belinha; Fernanda Gentil; Marco Parente; Renato Natal Jorge

PURPOSE The vestibular system is the part of the inner ear responsible for balance. Vertigo and dizziness are generally caused by vestibular disorders and are very common symptoms in people over 60 years old. One of the most efficient treatments at the moment is vestibular rehabilitation, permitting to improve the symptoms. However, this rehabilitation therapy is a highly empirical process, which needs to be enhanced and better understood. METHODS This work studies the vestibular system using an alternative computational approach. Thus, part of the vestibular system is simulated with a three dimensional numerical model. Then, for the first time using a combination of two discretization techniques (the finite element method and the smoothed particle hydrodynamics method), it is possible to simulate the transient behavior of the fluid inside one of the canals of the vestibular system. RESULTS The obtained numerical results are presented and compared with the available literature. The fluid/solid interaction in the model occurs as expected with the methods applied. The results obtained with the semicircular canal model, with the same boundary conditions, are similar to the solutions obtained by other authors. CONCLUSIONS The numerical technique presented here represents a step forward in the biomechanical study of the vestibular system, which in the future will allow the existing rehabilitation techniques to be improved.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2016

Finite element modelling of sound transmission from outer to inner ear

Bruno Areias; Carla Santos; Renato Natal Jorge; Fernanda Gentil; Marco Parente

The ear is one of the most complex organs in the human body. Sound is a sequence of pressure waves, which propagates through a compressible media such as air. The pinna concentrates the sound waves into the external auditory meatus. In this canal, the sound is conducted to the tympanic membrane. The tympanic membrane transforms the pressure variations into mechanical displacements, which are then transmitted to the ossicles. The vibration of the stapes footplate creates pressure waves in the fluid inside the cochlea; these pressure waves stimulate the hair cells, generating electrical signals which are sent to the brain through the cochlear nerve, where they are decoded. In this work, a three-dimensional finite element model of the human ear is developed. The model incorporates the tympanic membrane, ossicular bones, part of temporal bone (external auditory meatus and tympanic cavity), middle ear ligaments and tendons, cochlear fluid, skin, ear cartilage, jaw and the air in external auditory meatus and tympanic cavity. Using the finite element method, the magnitude and the phase angle of the umbo and stapes footplate displacement are calculated. Two slightly different models are used: one model takes into consideration the presence of air in the external auditory meatus while the other does not. The middle ear sound transfer function is determined for a stimulus of 60 dB SPL, applied to the outer surface of the air in the external auditory meatus. The obtained results are compared with previously published data in the literature. This study highlights the importance of external auditory meatus in the sound transmission. The pressure gain is calculated for the external auditory meatus.


Journal of Mechanics in Medicine and Biology | 2015

TOTAL OSSICULAR REPLACEMENT PROSTHESIS OF THE MIDDLE EAR: A BIOMECHANICAL ANALYSIS

Fernanda Gentil; Marco Marques; Marco Parente; Pedro Martins; Carla Santos; Renato Natal Jorge

The main goal of the present study is to analyze and characterize the behavior of the middle ear, when a total ossicular replacement prosthesis (TORP) is used in the ossicular chain, in order to troubleshoot conductive hearing loss. Using a finite element model (FEM), a dynamic study of the middle ear was made. The displacement values were obtained at the umbo and stapes footplate, for a sound pressure level of 80 dB sound pressure level (SPL) applied at the tympanic membrane, when a cartilage in membrane-prosthesis interface of different diameters and thicknesses was used. The results were compared with the healthy middle ear model. The usage of this model aims to achieve a set of techniques that promotes the best possible performance of prosthesis in the middle ear. The present study allows to conclude that the rehabilitation of the middle ear with TORP can lead to the best results when used with 4 mm diameter cartilages, with a thin thickness of 0.3 mm.


Journal of Biomechanics | 2016

Effects of the fibers distribution in the human eardrum: A biomechanical study

Fernanda Gentil; Marco Parente; P.A.L.S. Martins; Carolina Garbe; Carla Santos; Bruno Areias; Carla Branco; João Paço; Renato Natal Jorge

The eardrum separates the external ear from the middle ear and it is responsible to convert the acoustical energy into mechanical energy. It is divided by pars tensa and pars flaccida. The aim of this work is to analyze the susceptibility of the four quadrants of the pars tensa under negative pressure, to different lamina propria fibers distribution. The development of associated ear pathology, in particular the formation of retraction pockets, is also evaluated. To analyze these effects, a computational biomechanical model of the tympano-ossicular chain was constructed using computerized tomography images and based on the finite element method. Three fibers distributions in the eardrum middle layer were compared: case 1 (eardrum with a circular band of fibers surrounding all quadrants equally), case 2 (eardrum with a circular band of fibers that decreases in thickness in posterior quadrants), case 3 (eardrum without circular fibers in the posterior/superior quadrant). A static analysis was performed by applying approximately 3000Pa in the eardrum. The pars tensa of the eardrum was divided in four quadrants and the displacement of a central point of each quadrant analyzed. The largest displacements of the eardrum were obtained for the eardrum without circular fibers in the posterior/superior quadrant.


Computer Methods in Biomechanics and Biomedical Engineering | 2016

Finite element analysis of the transfer of sound in the myringosclerotic ear

Karla Berdich; Fernanda Gentil; Marco Parente; Carolina Garbe; Carla Santos; João Paço; R. M. Natal Jorge; Pedro Martins; Nicolae Faur

This work presents a biomechanical study of myringosclerosis (MS), an abnormal condition of the ear that produces calcification of the lamina propria of the eardrum. The study researched the transfer of sound to the stapes depending on the localization, dimension and calcification degree of the MS plaques. Results were obtained using a validated finite element model of the ear. The mechanical properties of the lamina propria were modified, in order to model MS plaques, using the rule of mixtures for particle composites considering that the plaques are made of hydroxyapatite particles in a matrix of connective tissue. Results show that the localization and dimension of the plaques are a factor of higher importance than calcification for loss of hearing through MS. The mobility of the stapes decreased with the presence of larger plaques and also when the tympanic annulus and the area of the handle of the malleus were involved.

Collaboration


Dive into the Fernanda Gentil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Garbe

Faculdade de Engenharia da Universidade do Porto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Areias

National Institute of Statistics and Geography

View shared research outputs
Researchain Logo
Decentralizing Knowledge