Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernanda Marques is active.

Publication


Featured researches published by Fernanda Marques.


Molecular Psychiatry | 2009

The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling.

João Bessa; Daniela Ferreira; I Melo; Fernanda Marques; João José Cerqueira; Joana Almeida Palha; Osborne F. X. Almeida; Nuno Sousa

The mechanisms underlying the initiation/onset of, and the recovery from, depression are still largely unknown; views that neurogenesis in the hippocampus may be important for the pathogenesis and amelioration of depressive symptoms have gained currency over the years although the original evidence has been challenged. In this study, an unpredictable chronic mild stress protocol was used to induce a depressive-like phenotype in rats. In the last 2 weeks of stress exposure, animals were treated with the antidepressants fluoxetine, imipramine, CP 156,526 or SSR 1494515, alone or combined with methylazoxymethanol, a cytostatic agent used to arrest neurogenesis. We found that antidepressants retain their therapeutic efficacy in reducing both measured indices of depression-like behavior (learned helplessness and anhedonia), even when neurogenesis is blocked. Instead, our experiments suggest re-establishment of neuronal plasticity (dendritic remodeling and synaptic contacts) in the hippocampus and prefrontal cortex, rather than neurogenesis, as the basis for the restoration of behavioral homeostasis by antidepressants.


Translational Psychiatry | 2012

Stress-induced changes in human decision-making are reversible

José Miguel Soares; Adriana Sampaio; Luís Miguel Ferreira; Nadine Correia Santos; Fernanda Marques; Joana Almeida Palha; João José Cerqueira; Nuno Sousa

Appropriate decision-making relies on the ability to shift between different behavioral strategies according to the context in which decisions are made. A cohort of subjects exposed to prolonged stress, and respective gender- and age-matched controls, performed an instrumental behavioral task to assess their decision-making strategies. The stressed cohort was reevaluated after a 6-week stress-free period. The behavioral analysis was complemented by a functional magnetic resonance imaging (fMRI) study to detect the patterns of activation in corticostriatal networks ruling goal-directed and habitual actions. Using structural MRI, the volumes of the main cortical and subcortical regions implicated in instrumental behavior were determined. Here we show that chronic stress biases decision-making strategies in humans toward habits, as choices of stressed subjects become insensitive to changes in outcome value. Using functional imaging techniques, we demonstrate that prolonged exposure to stress in humans causes an imbalanced activation of the networks that govern decision processes, shifting activation from the associative to the sensorimotor circuits. These functional changes are paralleled by atrophy of the medial prefrontal cortex and the caudate, and by an increase in the volume of the putamina. Importantly, a longitudinal assessment of the stressed individuals showed that both the structural and functional changes triggered by stress are reversible and that decisions become again goal-directed.


Neurobiology of Aging | 2007

Transthyretin and Alzheimer's disease: where in the brain?

João Sousa; Isabel Cardoso; Fernanda Marques; Maria João Saraiva; Joana Almeida Palha

Transthyretin (TTR), a carrier protein for thyroxine and retinol in plasma and cerebrospinal fluid (CSF), has been shown to bind the amyloid beta peptide. Accordingly, TTR has been suggested to protect against amyloid beta deposition, a key pathological feature in Alzheimers disease (AD). Supporting this view are the reduced TTR levels found in CSF of patients with AD, as well as reports of altered TTR expression in the cortex and hippocampus of AD rodent models. Importantly, early characterization of TTR distribution revealed the choroid plexus as the site of TTR synthesis within the brain. To resolve this controversy we used precise laser microdissection technology to assay for TTR mRNA expression. Our results clearly demonstrate that TTR is not produced in the brain parenchyma of wild-type mice nor in two different transgenic mouse models of AD, suggesting that contamination by choroid plexus contributed to the recent results indicating TTR production in various brain regions. The relevance of TTR to AD should now take into consideration TTR production by the choroid plexus and its ability, in the CSF, to sequester the amyloid beta peptide.


Journal of Cerebral Blood Flow and Metabolism | 2009

Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation

Fernanda Marques; João Sousa; Giovanni Coppola; Ana M. Falcão; Ana João Rodrigues; Daniel H. Geschwind; Nuno Sousa; Margarida Correia-Neves; Joana Almeida Palha

The choroid plexus, being part of the blood-brain barriers and responsible for the production of cerebrospinal fluid, is ideally positioned to transmit signals into and out of the brain. This study, using microarray analysis, shows that the mouse choroid plexus displays an acute-phase response after an inflammatory stimulus induced in the periphery by lipopolysaccharide (LPS). Remarkably, the response is specific to a restricted number of genes (out of a total of 24,000 genes analyzed, 252 are up-regulated and 173 are down-regulated) and transient, as it returns to basal conditions within 72 h. The up-regulated genes cluster into families implicated in immune-mediated cascades and in extracellular matrix remodeling, whereas those down-regulated participate in maintenance of the barrier function. Importantly, several acute-phase proteins, whose blood concentrations rise in response to inflammation, may contribute to the effects observed in vivo after LPS injection, as suggested by the differential response of primary choroid plexus epithelial cell cultures to LPS alone or to serum collected from animals exposed to LPS. By modulating the composition of the cerebrospinal fluid, which will ultimately influence the brain parenchyma, the choroid plexus response to inflammation may be of relevance in brain homeostasis in health and disease.


Fluids and Barriers of the CNS | 2011

Transcriptome signature of the adult mouse choroid plexus.

Fernanda Marques; João Sousa; Giovanni Coppola; Fuying Gao; Renato David Puga; Helena Brentani; Daniel H. Geschwind; Nuno Sousa; Margarida Correia-Neves; Joana Almeida Palha

BackgroundAlthough the gene expression profile of several tissues in humans and in rodent animal models has been explored, analysis of the complete choroid plexus (CP) transcriptome is still lacking. A better characterization of the CP transcriptome can provide key insights into its functions as one of the barriers that separate the brain from the periphery and in the production of cerebrospinal fluid.MethodsThis work extends further what is known about the mouse CP transcriptome through a microarray analysis of CP tissue from normal mice under physiological conditions.ResultsWe found that the genes most highly expressed are those implicated in energy metabolism (oxidative phosphorylation, glycolysis/gluconeogenesis) and in ribosomal function, which is in agreement with the secretory nature of the CP. On the other hand, genes encoding for immune mediators are among those with lower expression in basal conditions. In addition, we found genes known to be relevant during brain development, and not previously identified to be expressed in the CP, including those encoding for various axonal guidance and angiogenesis molecules and for growth factors. Some of these are known to influence the neural stem cell niche in the subventricular zone, highlighting the involvement of the CP as a likely modulator of neurogenesis. Interestingly, our observations confirm that the CP transcriptome is unique, displaying low homology with that of other tissues. Of note, we describe here that the closest similarity is with the transcriptome of the endothelial cells of the blood-brain barrier.ConclusionsBased on the data presented here, it will now be possible to further explore the function of particular proteins of the CP secretome in health and in disease.


Journal of Cerebral Blood Flow and Metabolism | 2008

Lipocalin 2 is a choroid plexus acute-phase protein

Fernanda Marques; Ana João Rodrigues; João Sousa; Giovanni Coppola; Daniel H. Geschwind; Nuno Sousa; Margarida Correia-Neves; Joana Almeida Palha

Lipocalin 2 (LCN2) is able to sequester iron-loaded bacterial siderophores and, therefore, is known to participate in the mammalian innate immune response. Of notice, LCN2 was shown to display bacteriostatic effects both in in vitro and in vivo. To reach the brain, bacteria must cross the blood—brain or the choroid plexus (CP)/cerebrospinal fluid (CSF) barriers. Additionally, as the CP is responsible for the production of most of the CSF, responses of the CP mediate signaling into the brain. We show here that in conditions of peripheral inflammation, LCN2 behaves as an acute phase protein in the CP. As early as 1 h after lipopolysaccharide peripheral administration, Lcn2 mRNA levels are upregulated, returning to basal levels after 72 h. Increased LCN2 protein is observed in choroidal epithelia and in endothelial cells of blood vessels in the brain parenchyma. Higher levels of LCN2 are also present in the CSF. These observations suggest that expression of LCN2 at the CP/CSF barrier might be bacteriostatic in the brain, avoiding bacteria dissemination within the CSF into the brain parenchyma. This study shows that the LCN2 is produced by the CP as a component of the innate immune response that protects the central nervous system from infection.


Translational Psychiatry | 2013

Stress-induced anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens

João Bessa; M. Morais; Fernanda Marques; Luísa Pinto; Joana Almeida Palha; Osborne F. X. Almeida; Nuno Sousa

There is accumulating evidence that the nucleus accumbens (NAc) has an important role in the pathophysiology of depression. As the NAc is a key component in the neural circuitry of reward, it has been hypothesized that anhedonia, a core symptom of depression, might be related to dysfunction of this brain region. Neuronal morphology and expression of plasticity-related molecules were examined in the NAc of rats displaying anhedonic behavior (measured in the sucrose-consumption test) in response to chronic mild stress. To demonstrate the relevance of our measurements to depression, we tested whether the observed changes were sensitive to reversal with antidepressants (imipramine and fluoxetine). Data show that animals displaying anhedonic behavior display an hypertrophy of medium spiny neurons in the NAc and, in parallel, have increased expression of the genes encoding for brain-derived neurotrophic factor, neural cell adhesion molecule and synaptic protein synapsin 1. Importantly, the reversal of stress-induced anhedonia by antidepressants is linked to a restoration of gene-expression patterns and dendritic morphology in the NAc. Using an animal model of depression, we show that stress induces anhedonic behavior that is associated with specific changes in the neuronal morphology and in the gene-expression profile of the NAc that are effectively reversed after treatment with antidepressants.


Endocrinology | 2009

Altered Iron Metabolism Is Part of the Choroid Plexus Response to Peripheral Inflammation

Fernanda Marques; Ana M. Falcão; João Sousa; Giovanni Coppola; Daniel H. Geschwind; Nuno Sousa; Margarida Correia-Neves; Joana Almeida Palha

Iron is essential for normal cellular homeostasis but in excess promotes free radical formation and is detrimental. Therefore, iron metabolism is tightly regulated. Here, we show that mechanisms regulating systemic iron metabolism may also control iron release into the brain at the blood-choroid plexus-cerebrospinal fluid (CSF) barrier. Intraperitoneal administration of lipopolysaccharide (LPS) in mice triggers a transient transcription of the gene encoding for hepcidin, a key regulator of iron homeostasis, in the choroid plexus, which correlated with increased detection of pro-hepcidin in the CSF. Similarly, the expression of several other iron-related genes is influenced in the choroid plexus by the inflammatory stimulus. Using primary cultures of rat choroid plexus epithelial cells, we show that this response is triggered not only directly by LPS but also by molecules whose expression increases in the blood in response to inflammation, such as IL-6. Intracellular conveyors of these signaling molecules include signal transducer and activator of transcription 3, which becomes phosphorylated, and SMAD family member 4, whose mRNA levels increase soon after LPS administration. This novel role for the choroid plexus-CSF barrier in regulating iron metabolism may be particularly relevant to restrict iron availability for microorganism growth, and in neurodegenerative diseases in which an inflammatory underlying component has been reported.


Frontiers in Cellular Neuroscience | 2012

The path from the choroid plexus to the subventricular zone: go with the flow!

Ana M. Falcão; Fernanda Marques; Ashley Novais; Nuno Sousa; Joana Almeida Palha; João Sousa

In adult mammals, under physiological conditions, neurogenesis, the process of generating new functional neurons from precursor cells, occurs mainly in two brain areas: the subgranular zone in the dentate gyrus of the hippocampus, and the subventricular zone (SVZ) lining the walls of the brain lateral ventricles. Taking into account the location of the SVZ and the cytoarchitecture of this periventricular neural progenitor cell niche, namely the fact that the slow dividing primary progenitor cells (type B cells) of the SVZ extend an apical primary cilium toward the brain ventricular space which is filled with cerebrospinal fluid (CSF), it becomes likely that the composition of the CSF can modulate both self-renewal, proliferation and differentiation of SVZ neural stem cells. The major site of CSF synthesis is the choroid plexus (CP); quite surprisingly, however, it is still largely unknown the contribution of molecules specifically secreted by the adult CP as modulators of the SVZ adult neurogenesis. This is even more relevant in light of recent evidence showing the ability of the CP to adapt its transcriptome and secretome to various physiologic and pathologic stimuli. By giving particular emphasizes to growth factors and axonal guidance molecules we will illustrate how CP-born molecules might play an important role in the SVZ niche cell population dynamics.


BMC Neuroscience | 2009

The choroid plexus response to a repeated peripheral inflammatory stimulus

Fernanda Marques; João Sousa; Giovanni Coppola; Daniel H. Geschwind; Nuno Sousa; Joana Almeida Palha; Margarida Correia-Neves

BackgroundChronic systemic inflammation triggers alterations in the central nervous system that may relate to the underlying inflammatory component reported in neurodegenerative disorders such as multiple sclerosis and Alzheimers disease. However, it is far from being understood whether and how peripheral inflammation contributes to induce brain inflammatory response in such illnesses. As part of the barriers that separate the blood from the brain, the choroid plexus conveys inflammatory immune signals into the brain, largely through alterations in the composition of the cerebrospinal fluid.ResultsIn the present study we investigated the mouse choroid plexus gene expression profile, using microarray analyses, in response to a repeated inflammatory stimulus induced by the intraperitoneal administration of lipopolysaccharide every two weeks for a period of three months; mice were sacrificed 3 and 15 days after the last lipopolysaccharide injection. The data show that the choroid plexus displays a sustained response to the repeated inflammatory stimuli by altering the expression profile of several genes. From a total of 24,000 probes, 369 are up-regulated and 167 are down-regulated 3 days after the last lipopolysaccharide injection, while at 15 days the number decreases to 98 and 128, respectively. The pathways displaying the most significant changes include those facilitating entry of cells into the cerebrospinal fluid, and those participating in the innate immune response to infection.ConclusionThese observations contribute to a better understanding of the brain response to peripheral inflammation and pave the way to study their impact on the progression of several disorders of the central nervous system in which inflammation is known to be implicated.

Collaboration


Dive into the Fernanda Marques's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge