Fernanda Regina Carani
Sao Paulo State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernanda Regina Carani.
Comparative Biochemistry and Physiology B | 2013
Caroline Nebo; Maria Célia Portella; Fernanda Regina Carani; Fernanda Losi Alves de Almeida; Carlos Roberto Padovani; Robson Francisco Carvalho; Maeli Dal-Pai-Silva
Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42 days, (F5) 5 days of fasting and 37 days of refeeding, and (F10) 10 days of fasting and 32 days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n=14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10 days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5 days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2011
Rodrigo Wagner Alves de Souza; Andreo Fernando Aguiar; Fernanda Regina Carani; Gerson Eduardo Rocha Campos; Carlos Roberto Padovani; Maeli Dal Pai Silva
The aim of this study was to test whether high‐intensity resistance training with insufficient recovery time between bouts, could result in a decrease of muscle fiber cross‐sectional area (CSA), alter fiber‐type frequencies and myosin heavy chain (MHC) isoform content in rat skeletal muscle. Wistar rats were divided into two groups: trained (Tr) and control (Co). Tr group were subjected to a high‐intensity resistance training program (5 days/week) for 12 weeks, involving jump bouts into water, carrying progressive overloads based on percentage body weight. At the end of experiment, animals were sacrificed, superficial white (SW) and deep red (DR) portions of the plantaris muscle were removed and submitted to mATPase histochemical reaction and SDS‐PAGE analysis. Throughout the experiment, both groups increased body weight, but Tr was lower than Co. There was a significant reduction in IIA and IID muscle fiber CSA in the DR portion of Tr compared to Co. Muscle fiber‐type frequencies showed a reduction in Types I and IIA in the DR portion and IID in the SW portion of Tr compared to Co; there was an increase in Types IIBD frequency in the DR portion. Change in muscle fiber‐type frequency was supported by a significant decrease in MHCI and MHCIIa isoforms accompanied by a significant increase in MHCIIb isoform content. MHCIId showed no significant differences between groups. These data show that high‐intensity resistance training with insufficient recovery time between bouts promoted muscle atrophy and a transition from slow‐to‐fast contractile activity in rat plantaris muscle. Anat Rec, 2011.
Comparative Biochemistry and Physiology B | 2014
Tassiana Gutierrez de Paula; Fernanda Losi Alves de Almeida; Fernanda Regina Carani; Ivan José Vechetti-Junior; Carlos Roberto Padovani; Rondinelle Arthur Simões Salomão; Edson Assunção Mareco; Vander Bruno dos Santos; Maeli Dal-Pai-Silva
Pacu (Piaractus mesopotamicus) is a fast-growing fish that is extensively used in Brazilian aquaculture programs and shows a wide range of thermal tolerance. Because temperature is an environmental factor that influences the growth rate of fish and is directly related to muscle plasticity and growth, we hypothesized that different rearing temperatures in juvenile pacu, which exhibits intense muscle growth by hyperplasia, can potentially alter the muscle growth patterns of this species. The aim of this study was to analyze the muscle growth characteristics together with the expression of the myogenic regulatory factors MyoD and myogenin and the growth factor myostatin in juvenile pacu that were submitted to different rearing temperatures. Juvenile fish (1.5 g weight) were distributed in tanks containing water and maintained at 24°C (G24), 28 °C (G28) and 32 °C (G32) (three replicates for each group) for 60 days. At days 30 and 60, the fish were anesthetized and euthanized, and muscle samples (n=12) were collected for morphological, morphometric and gene expression analyses. At day 30, the body weight and standard length were lower for G24 than for G28 and G32. Muscle fiber frequency in the <25 μm class was significantly higher in G24, and the >50 μm class was lower in G24. MyoD gene expression was higher in G24 compared with that in G28 and G32, and myogenin and myostatin mRNA levels were higher in G24 than G28. At day 60, the body weight and the standard length were higher in G32 but lower in G24. The frequency distribution of the <25 μm diameter muscle fibers was higher in G24, and that of the >50 μm class was lower in G24. MyoD mRNA levels were higher in G24 and G32, and myogenin mRNA levels were similar between G24 and G28 and between G24 and G32 but were higher in G28 compared to G32. The myostatin mRNA levels were similar between the studied temperatures. In light of our results, we conclude that low rearing temperature altered the expression of muscle growth-related genes and induced a delay in muscle growth in juvenile pacu (P. mesopotamicus). Our study provides a clear example of thermally induced phenotypic plasticity in pacu fish and shows that changing the rearing temperature during the juvenile stage can have a considerable effect on gene expression and muscle growth in this species.
Journal of Strength and Conditioning Research | 2010
Andreo Fernando Aguiar; Danilo Henrique Aguiar; Alan D. S. Felisberto; Fernanda Regina Carani; Rachel C. Milanezi; Carlos Roberto Padovani; Maeli Dal-Pai-Silva
Aguiar, AF, Aguiar, DH, Felisberto, ADS, Carani, FR, Milanezi, RC, Padovani, CR, and Dal-Pai-Silva, M. Effects of creatine supplementation during resistance training on mysoin heavy chain (MHC) expression in rat skeletal muscle fibers. J Strength Cond Res 24(1): 88-96, 2010-The purpose of this study was to utilize a rodent model to test the hypothesis that creatine (Cr) supplementation during resistance training would influence the pattern of slow-twitch muscle myosin heavy chain (MHC) isoforms expression. Male Wistar rats (2-3 months old, 250-300 g) were divided into 4 groups: Nontrained without creatine supplementation (CO), nontrained with creatine supplementation (CR), trained without creatine supplementation (TR), and trained with creatine supplementation (TRCR). TR and TRCR groups were submitted to a resistance training program for 5 weeks (5 days/week) for morphological and biochemical analysis of the soleus muscle. Weightlifting exercise involved jump sessions into water, carrying progressive overload equivalent to percentage of body weight. CR and TRCR groups were given creatine at 0.5 g/kg−1/d−1. Both Cr supplementation and resistance training alone or associated did not result in significant alterations (p > 0.05) in body weight gain, food intake, and muscle weight in the CR, TR and TRCR groups compared to the CO group. Also compared to the CO group, the CR group showed a significant (p < 0.02) increase in MHCI content and a reduction in MHCII; inversely, the TR group increased the MHCII content and reduced MHCI (p < 0.02). When combined, both creatine and resistance training did not promote significant (p > 0.05) changes in MHC content of the TRCR group compared to the CO group. The data show that Cr supplementation provides a potential action to abolish the exercise-induced MHC isoform transitions from slow to fast in slow-twitch muscle. Thus, Cr supplementation might be a suitable strategy to maintaining a slow phenotype in slow muscle during resistance training, which may be favorable to maintenance of muscle oxidative capacity of endurance athletes.
International Journal of Sports Medicine | 2013
Ivan José Vechetti-Junior; Andreo Fernando Aguiar; R.W. A. de Souza; Fernanda Losi Alves de Almeida; H. B. de Almeida Dias; M. de Silva; Fernanda Regina Carani; R.L. P. Ferraresso; Robson Francisco Carvalho; Maeli Dal-Pai-Silva
The purpose of this study was to determine whether the aerobic training-induced fiber-type transition in different muscles is associated with alterations in NFAT isoforms gene expression. We hypothesized that the aerobic training-induced fiber-type transition would be mediated by NFATc1-c3 isoforms without altering the CaN expression. Male Wistar rats (80 days old) were divided into a trained group (T; n=8) that underwent an 8-wk swimming endurance training program (5 days/week) and a control group (C; n=8). After the experimental period, the animals were sacrificed, and the soleus (SOL) and plantaris (PL) muscles were collected for morphometrical, histochemical and molecular analyses. Aerobic training induced a type I-to-type IIA fiber transition in the SOL muscle and a type IIB-to-type IIA fiber transition in the PL muscle, which were concomitant with a significant (p<0.05) increase in NFATc1-c3 gene expression in both the SOL and PL muscles. In contrast, the expression levels of calcineurin (CaN) and NFATc4 remained unchanged. Therefore, our results showed that fiber type switching induced by aerobic training is mediated by NFATc1-c3 isoforms without altering the CaN expression.
Meat Science | 2011
Caroline de Lima Francisco; André Mendes Jorge; Maeli Dal-Pai-Silva; Fernanda Regina Carani; Ludimila Canuto Cabeço; Severiano Silva
This study aimed to evaluate myosin heavy chain (MyHC) isoform expression and muscle fiber types of Longissimus dorsi (LD) and Semitendinosus (ST) in Mediterranean buffaloes and possible fibers muscles modulation according to different slaughter weights. The presence of MyHC IIb isoforms was not found. Only three isoforms of MyHC (IIa, IIx/d and I) were observed and their percentages did not vary significantly among slaughter weights. The confirmation of the presence of hybrid muscles fibers (IIA/X) in LD and ST muscles necessitated classifying the fiber types into fast and slow according to their contractile activity, by m-ATPase assay. For both muscles, the muscle fiber frequency was higher for fast than for slow fibers in all weight groups. There was a difference (P<0.05) in the frequency of LD and ST muscle fiber types according to slaughter weights, which demonstrate that the slaughter weight influences the profile of muscle fibers from buffaloes.
Journal of Molecular Histology | 2011
Raquel Santilone Bertaglia; Joyce Reissler; Francis da Silva Lopes; Walter L.G. Cavalcante; Fernanda Regina Carani; Carlos Roberto Padovani; Sergio Augusto Rodrigues; Antônio Carlos Cigogna; Robson Francisco Carvalho; Ana Angélica Henrique Fernandes; Márcia Gallacci; Maeli Dal Pai Silva
Heart failure (HF) is characterized by limited exercise tolerance, skeletal muscle atrophy, a shift toward fast muscle fiber, and myogenic regulatory factor (MRF) changes. Reactive oxygen species (ROS) also contribute to target organ damage in this syndrome. In this study, we investigated and compared morphofunctional characteristics and gene expression in Soleus (SOL—oxidative and slow twitching muscle) and in Extensor Digitorum Longus (EDL—glycolytic and fast twitching muscle) during HF. Two groups of rats were used: control (CT) and heart failure (HF), induced by a single injection of monocrotaline. MyoD and myogenin gene expression were determined by RT-qPCR, and MHC isoforms by SDS–PAGE; muscle fiber type frequency and cross sectional area (CSA) were analyzed by mATPase. A biochemical study was performed to determine lipid hydroperoxide (LH), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD); myography was used to determine amplitude, rise time, fall time, and fatigue resistance in both muscles. HF showed SOL and EDL muscle atrophy in all muscle fiber types; fiber frequency decreased in type IIC and muscle contraction fall time increased only in SOL muscle. Myogenin mRNA expression was lower in SOL and myoD decreased in HF EDL muscle. LH increased, and SOD and GSH-Px activity decreased only in HF SOL muscle. HF EDL muscle did not present changes in MHC distribution, contractile properties, HL concentration, and antioxidant enzyme activity. In conclusion, our results indicate that monocrotaline induced HF promoted more prominent biochemical, morphological and functional changes in SOL (oxidative and slow twitching muscle). Although further experiments are required to better determine the mechanisms involved in HF pathophysiology, our results contribute to understanding the muscle-specific changes that occur in this syndrome.
Journal of Aquaculture Research and Development | 2014
Fernanda Regina Carani; B. O. da S. Duran; Warlen Pereira Piedade; F. A. A. da Costa; V. M. F. de Almeida-Val; Maeli Dal-Pai-Silva
The skeletal muscle of the species Arapaima gigas (pirarucu) constitutes the major edible part of the fish and is, therefore, an important protein source for human consumption. Post-natal muscle growth is regulated by the expression of myostatin as well as the Myogenic Regulatory Factors (MRFs) MyoD and myogenin. Once pirarucu reaches large size, we assume that the control of muscle growth by MRFs and myostatin occurs differentially at the initials life stages. In the present work we evaluated the morphological aspects and expression of MRF genes in skeletal muscle of pirarucu during early juvenile stage (Group A, up to 50 g, n=7), and post juvenile stages (Groups B, from 50 to 400 g, n=7; C, from 400 g to 5 kg, n=7, and D, from 5 to 9 kg, n=7). Transverse sections of red and white muscles were obtained to evaluate muscle fiber morphological and morphometric characteristics. MyoD, myogenin and myostatin genes and protein expressions were determined after quantitative real-time polymerase chain reaction and western blotting, respectively. Pirarucu skeletal muscle exhibited similar morphologies at different life stages. It was possible to conclude that both hyperplasia and hypertrophy occur during muscle growth in early and postjuvenile stages. As regard as expression, both mRNA and protein levels were similar among all groups for MyoD and myogenin. Myostatin presented lower mRNA levels and higher protein levels in early-juvenile stage, compared with the other groups. The levels of MRFs and myostatin might be involved in a balance that controls hyperplasia and hypertrophy occurring during post-natal muscle growth. Myostatin does not appear to play a crucial role during pirarucu early-juvenile stages. Since this species represents an interesting model for aquaculture programs due to high growing rates, our data suggest that the best phase to improve muscle growth in pirarucu is at post-juvenile stage and this will turn the employment of pirarucu farming economically better.
Experimental Physiology | 2016
Francis Lopes Pacagnelli; Andreo Fernando Aguiar; Dijon Henrique Salomé de Campos; Eduardo Paulino Castan; Rodrigo Wagner Alves de Souza; Fernanda Losi Alves de Almeida; Fernanda Regina Carani; Robson Francisco Carvalho; Antonio Carlos Cicogna; Maeli Dal Pai Silva
What is the central question of this study? We investigated the effects of physical training on phenotypic (fibre‐type content) and myogenic features (MyoD and myogenin expression) in skeletal muscle during the transition from cardiac hypertrophy to heart failure. What is the main finding and its importance? We provide new insight into skeletal muscle adaptations by showing that physical training increases the type I fibre content during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin expression. These results have important clinical implications for patients with heart failure, because this population has reduced muscle oxidative capacity.
Journal of Molecular Histology | 2012
Ludimila Canuto Cabeço; Paulo Eduardo Budri; Mirella Baroni; Eduardo Paulino Castan; Fernanda Regina Carani; Paula Aiello Tomé de Souza; Patrícia Aline Boer; Selma Maria Michelin Matheus; Maeli Dal-Pai-Silva