Fernanda Teixeira Borges
Federal University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernanda Teixeira Borges.
PLOS ONE | 2012
Luciana Aparecida Reis; Fernanda Teixeira Borges; Manuel de Jesus Simões; Andrea Aurélio Borges; Rita Sinigaglia-Coimbra; Nestor Schor
This study evaluated the effects of bone marrow-derived mesenchymal stem cells (BMSCs) or their conditioned medium (CM) on the repair and prevention of Acute Kidney Injury (AKI) induced by gentamicin (G). Animals received daily injections of G up to 20 days. On the 10th day, injections of BMSCs, CM, CM+trypsin, CM+RNase or exosome-like microvesicles extracted from the CM were administered. In the prevention groups, the animals received the BMSCs 24 h before or on the 5th day of G treatment. Creatinine (Cr), urea (U), FENa and cytokines were quantified. The kidneys were evaluated using hematoxylin/eosin staining and immunohystochemistry. The levels of Cr, U and FENa increased during all the periods of G treatment. The BMSC transplantation, its CM or exosome injections inhibited the increase in Cr, U, FENa, necrosis, apoptosis and also increased cell proliferation. The pro-inflammatory cytokines decreased while the anti-inflammatory cytokines increased compared to G. When the CM or its exosomes were incubated with RNase (but not trypsin), these effects were blunted. The Y chromosome was not observed in the 24-h prevention group, but it persisted in the kidney for all of the periods analyzed, suggesting that the injury is necessary for the docking and maintenance of BMSCs in the kidney. In conclusion, the BMSCs and CM minimized the G-induced renal damage through paracrine effects, most likely through the RNA carried by the exosome-like microvesicles. The use of the CM from BMSCs can be a potential therapeutic tool for this type of nephrotoxicity, allowing for the avoidance of cell transplantations.
Brazilian Journal of Medical and Biological Research | 2013
Fernanda Teixeira Borges; L.A. Reis; Nestor Schor
Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm) involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.
Diabetology & Metabolic Syndrome | 2013
Ellen On Ptilovanciv; Gabryelle S Fernandes; Luciana Cristina Teixeira; Luciana Aparecida Reis; Edson Andrade Pessoa; Marcia Bastos Convento; Manuel de Jesus Simões; Guilherme Albertoni; Nestor Schor; Fernanda Teixeira Borges
One important concern in the treatment of diabetes is the maintenance of glycemic levels and the prevention of diabetic nephropathy. Inducible heme oxygenase 1 (HO-1) is a rate-limiting enzyme thought to have antioxidant and cytoprotective roles. The goal of the present study was to analyze the effect of HO-1 induction in chronically hyperglycemic rats. The hyperglycemic rats were divided into two groups: one group, called STZ, was given a single injection of streptozotocin; and the other group was given a single streptozotocin injection as well as daily injections of hemin, an HO-1 inducer, over 60 days (STZ + HEME). A group of normoglycemic, untreated rats was used as the control (CTL).Body weight, diuresis, serum glucose levels, microalbuminuria, creatinine clearance rate, urea levels, sodium excretion, and lipid peroxidation were analyzed. Histological alterations and immunohistochemistry for HO-1 and inducible nitric oxide synthase (iNOS) were assessed. After 60 days, the STZ group exhibited an increase in blood glucose, diuresis, urea, microalbuminuria, and sodium excretion. There was no weight gain, and there was a decrease in creatinine clearance in comparison to the CTL group. In the STZ + HEME group there was an improvement in the metabolic parameters and kidney function, a decrease in blood glucose, serum urea, and microalbuminuria, and an increase of creatinine clearance, in comparison to the STZ group.There was glomerulosclerosis, collagen deposition in the STZ rats and increase in iNOS and HO-1 expression. In the STZ + HEME group, the glomerulosclerosis and fibrosis was prevented and there was an increase in the expression of HO-1, but decrease in iNOS expression and lipid peroxidation. In conclusion, our data suggest that chronic induction of HO-1 reduces hyperglycemia, improves glucose metabolism and, at least in part, protects the renal tissue from hyperglycemic injury, possibly through the antioxidant activity of HO-1.
Brazilian Journal of Medical and Biological Research | 2009
Edson Andrade Pessoa; Marcia Bastos Convento; R.G. Silva; A.S.B. Oliveira; Fernanda Teixeira Borges; Nestor Schor
Nephrotoxicity is the main side effect of antibiotics such as gentamicin. Preconditioning has been reported to protect against injuries as ischemia/reperfusion. The objective of the present study was to determine the effect of preconditioning with gentamicin on LLC-PK1 cells. Preconditioning was induced in LLC-PK1 cells by 24-h exposure to 2.0 mM gentamicin (G/IU). After 4 or 15 days of preconditioning, cells were again exposed to gentamicin (2.0 mM) and compared to untreated control or G/IU cells. Necrosis and apoptosis were assessed by acridine orange and HOESCHT 33346. Nitric oxide (NO) and endothelin-1 were assessed by the Griess method and available kit. Heat shock proteins were analyzed by Western blotting. After 15 days of preconditioning, LLC-PK1 cells exhibited a significant decrease in necrosis (23.5 +/- 4.3 to 6.5 +/- 0.3%) and apoptosis (23.5 +/- 4.3 to 6.5 +/- 2.1%) and an increase in cell proliferation compared to G/IU. NO (0.177 +/- 0.05 to 0.368 +/- 0.073 microg/mg protein) and endothelin-1 (1.88 +/- 0.47 to 2.75 +/- 0.53 pg/mL) production significantly increased after 15 days of preconditioning compared to G/IU. No difference in inducible HSP 70, constitutive HSC 70 or HSP 90 synthesis in tubular cells was observed after preconditioning with gentamicin. The present data suggest that preconditioning with gentamicin has protective effects on proximal tubular cells, that involved NO synthesis but not reduction of endothelin-1 or production of HSP 70, HSC 70, or HSP 90. We conclude that preconditioning could be a useful tool to prevent the nephrotoxicity induced by gentamicin.
Experimental Biology and Medicine | 2010
Guilherme Albertoni; Edgar Maquigussa; Edson Andrade Pessoa; Jose Augusto Barreto; Fernanda Teixeira Borges; Nestor Schor
Hyperuricemia is associated with increases in cardiovascular risk and renal disease. Mesangial cells regulate glomerular filtration rates through the release of hormones and vasoactive substances. This study evaluates the signaling pathway of uric acid (UA) in immortalized human mesangial cells (ihMCs). To evaluate cell proliferation, ihMCs were exposed to UA (6–10 mg/dL) for 24–144 h. In further experiments, ihMCs were treated with UA (6–10 mg/dL) for 12 and 24 h simultaneously with losartan (10−7 mmol/L). Angiotensin II (AII) and endothelin-1 (ET-1) were assessed using the enzyme-linked immunosorbent assay (ELISA) technique. Pre-pro-ET mRNA was evaluated by the real-time PCR technique. It was observed that soluble UA (8 and 10 mg/dL) stimulated cellular proliferation. UA (10 mg/dL) for 12 h significantly increased AII protein synthesis and ET-1 expression and protein production was increased after 24 h. Furthermore, UA increased [Ca2+]i, and this effect was significantly blocked when ihMCs were preincubated with losartan. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. In addition, UA can potentially affect glomerular function due to UA-induced proliferation and contraction of mesangial cells. The latter mechanism could be related to the long-term effects of UA on renal function and chronic kidney disease.
PLOS ONE | 2016
Maria de Fátima Fernandes Vattimo; Mirian Watanabe; Cassiane Dezoti da Fonseca; Luciana Barros de Moura Neiva; Edson Andrade Pessoa; Fernanda Teixeira Borges
Polymyxins have a long history of dose-limiting toxicity, but the underlying mechanism of polymyxin B-induced nephrotoxicity is unclear. This study investigated the link between the nephrotoxic effects of polymyxin B on renal metabolic functions and mitochondrial morphology in rats and on the structural integrity of LLC-PK1 cells. Fifteen Wistar rats were divided into two groups: Saline group, rats received 3 mL/kg of 0.9% NaCl intraperitoneally (i.p.) once a day for 5 days; Polymyxin B group, rats received 4 mg/kg/day of polymyxin B i.p. once a day for 5 days. Renal function, renal hemodynamics, oxidative stress, mitochondrial injury and histological characteristics were assessed. Cell membrane damage was evaluated via lactate dehydrogenase and nitric oxide levels, cell viability, and apoptosis in cells exposed to 12.5 μM, 75 μM and 375 μM polymyxin B. Polymyxin B was immunolocated using Lissamine rhodamine-polymyxin B in LLC-PK1 cells. Polymyxin B administration in rats reduced creatinine clearance and increased renal vascular resistance and oxidative damage. Mitochondrial damage was confirmed by electron microscopy and cytosolic localization of cytochrome c. Histological analysis revealed tubular dilatation and necrosis in the renal cortex. The reduction in cell viability and the increase in apoptosis, lactate dehydrogenase levels and nitric oxide levels confirmed the cytotoxicity of polymyxin B. The incubation of LLC-PK1 cells resulted in mitochondrial localization of polymyxin B. This study demonstrates that polymyxin B nephrotoxicity is characterized by mitochondrial dysfunction and free radical generation in both LLC-PK1 cells and rat kidneys. These data also provide support for clinical studies on the side effects of polymyxin B.
Jornal Brasileiro De Nefrologia | 2013
Clara Versolato Razvickas; Fernanda Teixeira Borges; Andreia Silva Oliveira; Nestor Schor; Mirian A. Boim
INTRODUCTION Mesangial cells (MC) may be involved in the glomerular alterations induced by ischemia/reperfusion injury. OBJECTIVE To evaluate the response of immortalized MC (IMC) to 30 minutes of hypoxia followed by reoxygenation periods of 30 minutes (H/R30) or 24 hours (H/R24). METHODS The intracellular calcium concentration ([Ca+2]i) was measured before (baseline) and after adding angiotensin II (AII, 10-5 M) in the presence and absence of glybenclamide (K ATP channel blocker). We estimated the level of intracellular ATP, nitric oxide (NO) and PGE2. RESULTS ATP concentration decreased after hypoxia and increased after reoxygenation. Hypoxia and H/R induced increases in basal [Ca+2]i. AII induced increases in [Ca+2]i in normoxia (97 ± 9%), hypoxia (72 ± 10%) or HR30 (85 ± 17%) groups, but there was a decrease in the response to AII in group H/R24 since the elevation in [Ca+2]i was significantly lower than in control (61 ± 10%, p < 0.05). Glybenclamide did not modify this response. It was observed a significant increase in NO generation after 24 hours of reoxygenation, but no difference in PGE2 production was observed. Data suggest that H/R injury is characterized by increased basal [Ca+2]i and by an impairment in the response of cells to AII. Results suggest that the relative insensibility to AII may be at least in part mediated by NO but not by prostaglandins or vasodilator K ATP channels. CONCLUSION H/R caused dysfunction in IMC characterized by increases in basal [Ca+2]i during hypoxia and reduction in the functional response to AII during reoxygenation.
Toxicology and Applied Pharmacology | 2011
Edson Andrade Pessoa; Marcia Bastos Convento; Otoniel S. Ribas; Vivian Regina Tristão; Luciana Aparecida Reis; Fernanda Teixeira Borges; Nestor Schor
Nephrotoxicity is the main side effect of gentamicin (GENTA). Preconditioning (PC) refers to a situation in which an organ subjected to an injury responds less intensely when exposed to another injury. The aim of this study was to evaluate the effect of PC with GENTA on nephrotoxic acute kidney injury (AKI). GENTA group rats were injected daily with GENTA (40 mg/kg/BW) for 10 days. PC animals were injected with GENTA for 3 days (40 mg/kg/BW/daily) and, after one rest week, were injected daily with GENTA for 10 days. Animals of the L-NAME and DICLO groups were preconditioned for 3 days and then received daily injections of GENTA for 10 days; they were concomitantly treated with L-NAME (10 mg/kg/BW) and diclofenac (DICLO, 5 mg/kg/BW) for 13 days. Blood and urine were collected for measurement of serum creatinine, urea, urine sodium, protein, hydroperoxides, lipid peroxidation and nitric oxide (NO). The animals were killed; kidneys were removed for histology and immunohistochemistry for apoptosis and cell proliferation. GENTA group rats showed an increase in plasma creatinine, urea, urine sodium, hydroperoxides, lipid peroxidation, proteinuria, necrosis and apoptosis, characterizing nephrotoxic AKI. PC animals showed a decrease in these parameters and increased proliferation. The blockade of NO synthesis by L-NAME potentiated the protective effect, suggesting that NO contributed to the injury caused by GENTA. The blockade of prostaglandin synthesis with DICLO increased serum and urinary parameters, blunting the protective effect of PC. Our data suggest that PC could be a useful tool to protect against nephrotoxic AKI.
Scientific Reports | 2017
Marcia Bastos Convento; Edson Andrade Pessoa; Edgar Cruz; Maria Aparecida da Glória; Nestor Schor; Fernanda Teixeira Borges
TGF-β1 is the main mediator of epithelial-to-mesenchymal transition (EMT). Hyperoxaluria induces crystalluria, interstitial fibrosis, and progressive renal failure. This study analyzed whether hyperoxaluria is associated with TGF-β1 production and kidney fibrosis in mice and if oxalate or calcium oxalate (CaOx) could induce EMT in proximal tubule cells (HK2) and therefore contribute to the fibrotic process. Hyperoxaluria was induced by adding hydroxyproline and ethylene glycol to the mice’s drinking water for up to 60 days. Renal function and oxalate and urinary crystals were evaluated. Kidney collagen production and TGF-β1 expression were assessed. EMT was analyzed in vitro according to TGF-β1 production, phenotypic characterization, invasion, cell migration, gene and protein expression of epithelial and mesenchymal markers. Hyperoxaluric mice showed a decrease in renal function and an increase in CaOx crystals and Ox urinary excretion. The deposition of collagen in the renal interstitium was observed. HK2 cells stimulated with Ox and CaOx exhibited a decreased expression of epithelial as well as increased expression mesenchymal markers; these cells presented mesenchymal phenotypic changes, migration, invasiveness capability and TGF-β1 production, characterizing EMT. Treatment with BMP-7 or its overexpression in HK2 cells was effective at preventing it. This mechanism may contribute to the fibrosis observed in hyperoxaluria.
Archive | 2012
Guilherme Ambrosio Albertoni; Fernanda Teixeira Borges; Nestor Schor
Since the discovery of hyperuricemia as the cause of gout in the early 1800s, hypertension, cardiovascular disease and kidney disease have also been related to increased serum uric acid (UA) levels in subsequent years (Nakagawa et al., 2006); patients with gout had a much higher prevalence of hypertension (25-50%), mild-to-moderate kidney disease (20-60%) (Kutzing & Firestein, 2008) and cardiovascular disease (90%) compared to the general population. However, conflicting results regarding the role of UA as the causative factor in diseases other than gouty arthritis resulted in a shift of interest away from UA. In recent years, uric acid regained the lost popularity due to new findings in a number of disease states including hypertension, renal disease, metabolic syndrome and many more (Feig et al., 2008). Hyperuricemia arises from excess dietary purine or ethanol intake, decreased renal excretion of UA, or from tumor lyses in lymphoma, leukaemia, or solid tumours (Kutzing & Firestein, 2008). Finally, several drugs alter UA handling by the kidney, for example drug therapy with candesartan (Li et al., 2008) or both loopand thiazide diuretics, all of which increase the net urate reabsorption (Suliman et al., 2006). In the majority of individuals, hyperuricemia will be asymptomatic, but as UA tends to precipitate in tissues and in other body fluids, persistent hyperuricemia may eventually lead to the accumulation of urate crystals in many places, resulting in either acute painful conditions, like gout/tophaceous gout/gouty arthritis, urolithiasis, or, in severe cases, like tumor lysis syndrome, in acute UA nephropathy (Riegersperger et al., 2011). In recent years, increased fructose intake, particularly via sweetened beverages, started to attract more attention from the medical community. During the last two centuries, at least in the western world, dietary fructose intake dramatically increased, with corresponding increases in serum UA levels (Feig et al., 2008). The increase in fructose intake and hyperuricemia is now being associated to the development of metabolic syndrome. Hyperuricemia is associated with an increased risk for developing CKD (Obermayr et al., 2008) and a risk factor for renal dysfunction in patients with rheumatoid arthritis (Daoussis et al., 2009). Retrospective data suggest an influence of hyperuricemia on graft loss after kidney transplantation (Haririan et al., 2010). A screening among 18,020 individuals with chronic kidney diseases (CKD) found a 20.6% prevalence of hyperuricemia. A cross-sectional study in individuals aged over 40 years found 10.5% prevalence of CKD, and among these, 26% were hyperuricemic (Shan et al., 2010). A