Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando A. Pagliai is active.

Publication


Featured researches published by Fernando A. Pagliai.


PLOS Pathogens | 2014

The Transcriptional Activator LdtR from ‘Candidatus Liberibacter asiaticus’ Mediates Osmotic Stress Tolerance

Fernando A. Pagliai; Christopher L. Gardner; Lora Bojilova; Amanda Sarnegrim; Cheila Tamayo; Anastasia H. Potts; Max Teplitski; Svetlana Y. Folimonova; Claudio F. Gonzalez; Graciela L. Lorca

The causal agent of Huanglongbing disease, ‘Candidatus Liberibacter asiaticus’, is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from ‘Ca. L. asiaticus’ involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR), and a predicted L,D-transpeptidase (ldtP). In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype) and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of ‘Ca. Liberibacter asiaticus’, using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease.


Journal of Biological Chemistry | 2010

LVIS553 transcriptional regulator specifically recognizes novobiocin as an effector molecule.

Fernando A. Pagliai; Christopher L. Gardner; Santosh G. Pande; Graciela L. Lorca

In this study we aimed to identify small molecules with high affinity involved in the allosteric regulation of LVIS553, a MarR member from Lactobacillus brevis ATCC367. Using high throughput screening, novobiocin was found to specifically bind LVIS553 with a KD = 33.8 ± 2.9 μm consistent with a biologically relevant ligand. Structure guided site-directed mutagenesis identified Lys9 as a key residue in novobiocin recognition. The results found in vitro were correlated in vivo. An increased tolerance to the antibiotic was observed when LVIS553 and the downstream putative transport protein LVIS552 were either expressed in a low copy plasmid in L. brevis or as a single copy chromosomal insertion in Bacillus subtilis. We provide evidence that LVIS553 is involved in the specific regulation of a new mechanism of tolerance to novobiocin.


Journal of Biological Chemistry | 2010

Inhibition of AcpA Phosphatase Activity with Ascorbate Attenuates Francisella tularensis Intramacrophage Survival

Steven McRae; Fernando A. Pagliai; Nrusingh P. Mohapatra; Alejandro Gener; Asma Sayed Abdelgeliel Mahmou; John S. Gunn; Graciela L. Lorca; Claudio F. Gonzalez

Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (Ki = 380 ± 160 μm) and 2-phosphoascorbate (Ki = 3.2 ± 0.85 μm) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia.


PLOS ONE | 2013

MglA/SspA complex interactions are modulated by inorganic polyphosphate.

Algevis Wrench; Christopher L. Gardner; Sara Siegel; Fernando A. Pagliai; Mahsa Malekiha; Claudio F. Gonzalez; Graciela L. Lorca

The transcription factors MglA and SspA of Francisella tularensis form a heterodimer complex and interact with the RNA polymerase to regulate the expression of the Francisella pathogenicity island (FPI) genes. These genes are essential for this pathogen’s virulence and survival within host cells. Our goal was to determine if an intracellular metabolite modulate these protein/protein interactions. In this study, we identified inorganic polyphosphate (polyP) as a signal molecule that promotes the interaction of MglA and SspA from F. tularensis SCHU S4. Analysis of the Mgla/SspA interaction was carried out using a two-hybrid system. The Escherichia coli reporter strain contained a deletion on the ppK-ppX operon, inhibiting polyP synthesis. The interaction between MglA and SspA was significantly impaired, as was the interaction between the MglA/SspA complex and the regulatory protein, FevR, indicating the stabilizing effect of polyP. In F. tularensis, chromatin immune precipitation studies revealed that in the absence of polyP, binding of the MglA/SspA complex to the promoter region of the pdpD, iglA, fevR and ppK genes is decreased. Isothermal titration calorimetry (ITC) indicated that polyP binds directly to the MglA/SspA complex with high affinity (KD = 0.3 µM). These observations directly correlated with results obtained from calorimetric scans (DSC), where a strong shift in the mid-transition temperature (Tm) of the MglA/SspA complex was observed in the presence of polyP.


Molecular Microbiology | 2011

Lactobacillus brevis responds to flavonoids through KaeR, a LysR‐type of transcriptional regulator

Santosh G. Pande; Fernando A. Pagliai; Christopher L. Gardner; Algevis Wrench; Raed Narvel; Claudio F. Gonzalez; Graciela L. Lorca

The ability of transcription factors to respond to flavonoids as signal molecules was investigated in Lactobacillus brevis. Through in vitro screening of a small library of flavonoids, LVIS1989 (KaeR), a LysR‐type transcriptional regulator (LTTR), was identified as responsive to kaempferol. The modulation of KaeR activity by flavonoids was characterized in vivo and in vitro. DNase I footprint assays identified the binding of KaeR at two distinctive sites, one in the intergenic region between LVIS1988 and kaeR (−39 to +2) and another within LVIS1988 (−314 to −353, from kaeR translational start point). EMSA assays revealed that both binding sites are required for KaeR binding in vitro. Furthermore, KaeR–DNA interactions were stabilized by the addition of kaempferol (20 µM). In vivo qRT‐PCR experiments performed in L. brevis confirmed that the divergently transcribed genes LVIS1988, LVIS1987 and LVIS1986 and kaeR are upregulated in the presence of kaempferol, indicating the role of KaeR as a transcriptional activator. Transcriptional lacZ fusions using Bacillus subtilis as a surrogate host showed that expression of kaeR and LVIS1988 were induced by the presence of the flavonoid. These results indicate that KaeR belongs to a small and poorly understood group of LTTRs that are positively autoregulated in the presence of a ligand.


Frontiers in Microbiology | 2015

Identification of a Ligand Binding Pocket in LdtR from Liberibacter asiaticus

Fernando A. Pagliai; Claudio F. Gonzalez; Graciela L. Lorca

LdtR is a transcriptional activator involved in the regulation of a putative L,D transpeptidase in Liberibacter asiaticus, an unculturable pathogen and one of the causative agents of Huanglongbing disease. Using small molecule screens we identified benzbromarone as an inhibitor of LdtR activity, which was confirmed using in vivo and in vitro assays. Based on these previous results, the objective of this work was to identify the LdtR ligand binding pocket and characterize its interactions with benzbromarone. A structural model of LdtR was constructed and the molecular interactions with the ligand were predicted using the SwissDock interface. Using site-directed mutagenesis, these residues were changed to alanine. Electrophoretic mobility shift assays, thermal denaturation, isothermal titration calorimetry experiments, and in vivo assays were used to identify residues T43, L61, and F64 in the Benz1 pocket of LdtR as the amino acids most likely involved in the binding to benzbromarone. These results provide new information on the binding mechanism of LdtR to a modulatory molecule and provide a blue print for the design of therapeutics for other members of the MarR family of transcriptional regulators involved in pathogenicity.


Frontiers in Microbiology | 2016

Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding

Víctor S. Blancato; Fernando A. Pagliai; Christian Magni; Claudio F. Gonzalez; Graciela L. Lorca

The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC), indicated that CitO has a high affinity for citrate (KD = 1.2 ± 0.2 μM), while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation.


Frontiers in Microbiology | 2016

Drug Repurposing: Tolfenamic Acid Inactivates PrbP, a Transcriptional Accessory Protein in Liberibacter asiaticus.

Christopher L. Gardner; Fernando A. Pagliai; Lei Pan; Lora Bojilova; Maria I. Torino; Graciela L. Lorca; Claudio F. Gonzalez

CLIBASIA_01510, PrbP, is a predicted RNA polymerase binding protein in Liberibacter asiaticus. PrbP was found to regulate expression of a small subset of ribosomal genes through interactions with the β-subunit of the RNA polymerase and a short, specific sequence on the promoter region. Molecular screening assays were performed to identify small molecules that interact with PrbP in vitro. Chemical hits were analyzed for therapeutic efficacy against L. asiaticus via an infected leaf assay, where the transcriptional activity of L. asiaticus was found to decrease significantly after exposure to tolfenamic acid. Similarly, tolfenamic acid was found to inhibit L. asiaticus infection in highly symptomatic citrus seedlings. Our results indicate that PrbP is an important transcriptional regulator for survival of L. asiaticus in planta, and the chemicals identified by molecular screening assays could be used as a therapeutic treatment for huanglongbing disease.


Microbial Biotechnology | 2017

Functional characterization of LotP from Liberibacter asiaticus

Flavia Loto; Janelle F. Coyle; Kaylie A. Padgett; Fernando A. Pagliai; Christopher L. Gardner; Graciela L. Lorca; Claudio F. Gonzalez

Liberibacter asiaticus is an unculturable parasitic bacterium of the alphaproteobacteria group hosted by both citrus plants and a psyllid insect vector (Diaphorina citri). In the citrus tree, the bacteria thrive only inside the phloem, causing a systemically incurable and deadly plant disease named citrus greening or Huanglongbing. Currently, all commercial citrus cultivars in production are susceptible to L. asiaticus, representing a serious threat to the citrus industry worldwide. The technical inability to isolate and culture L. asiaticus has hindered progress in understanding the biology of this bacterium directly. Consequently, a deep understanding of the biological pathways involved in the regulation of host–pathogen interactions becomes critical to rationally design future and necessary strategies of control. In this work, we used surrogate strains to evaluate the biochemical characteristics and biological significance of CLIBASIA_03135. This gene, highly induced during early stages of plant infection, encodes a 23 kDa protein and was renamed in this work as LotP. This protein belongs to an uncharacterized family of proteins with an overall structure resembling the LON protease N‐terminus. Co‐immunoprecipitation assays allowed us to identify the Liberibacter chaperonin GroEL as the main LotP‐interacting protein. The specific interaction between LotP and GroEL was reconstructed and confirmed using a two‐hybrid system in Escherichia coli. Furthermore, it was demonstrated that LotP has a native molecular weight of 44 kDa, corresponding to a dimer in solution with ATPase activity in vitro. In Liberibacter crescens, LotP is strongly induced in response to conditions with high osmolarity but repressed at high temperatures. Electrophoretic mobility shift assay (EMSA) results suggest that LotP is a member of the LdtR regulon and could play an important role in tolerance to osmotic stress.


Molecular Microbiology | 2014

A dual role of the transcriptional regulator TstR provides insights into cyanide detoxification in Lactobacillus brevis

Fernando A. Pagliai; Caitlin C. Murdoch; Sara M. Brown; Claudio F. Gonzalez; Graciela L. Lorca

In this study we uncover two genes in Lactobacillus brevis ATCC 367, tstT and tstR, encoding for a rhodanese and a transcriptional regulator involved in cyanide detoxification. TstT (LVIS_0852) belongs to a new class of thiosulphate:cyanide sulphurtransferases. We found that TstR (LVIS_0853) modulates both the expression and the activity of the downstream‐encoded tstT. The TstR binding site was identified at −1 to +33, from tstR transcriptional start site. EMSA revealed that sulphite, a product of the reaction catalysed by TstT, improved the interaction between TstR:PtstR, while Fe(III) disrupted this interaction. Site‐directed mutagenesis in TstR identified M64 as a key residue in sulphite recognition, while residues H136‐H139‐C167‐M171 formed a pocket for ferric iron co‐ordination. In addition to its role as a transcriptional repressor, TstR is also involved in regulating the thiosulphate:cyanide sulphurtransferase activity of TstT. A threefold increase in TstT activity was observed in the presence of TstR, which was enhanced by the addition of Fe(III). Overexpression of the tstRT operon was found to increase the cyanide tolerance of L. brevis and Escherichia coli. The protein–protein interaction between TstR and TstT described herein represents a novel mechanism for regulation of enzymatic activity by a transcriptional regulator.

Collaboration


Dive into the Fernando A. Pagliai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Pan

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge