Fernando C. Baltanás
University of Salamanca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando C. Baltanás.
Brain Pathology | 2011
Fernando C. Baltanás; Iñigo Casafont; Eduardo Weruaga; José R. Alonso; Maria T. Berciano; Miguel Lafarga
The Purkinje cell (PC) degeneration (pcd) phenotype results from mutation in nna1 gene and is associated with the degeneration and death of PCs during the postnatal life. Although the pcd mutation is a model of the ataxic mouse, it shares clinical and pathological characteristics of inherited human spinocerebellar ataxias. PC degeneration in pcd mice provides a useful neuronal system to study nuclear mechanisms involved in DNA damage‐dependent neurodegeneration, particularly the contribution of nucleoli and Cajal bodies (CBs). Both nuclear structures are engaged in housekeeping functions for neuronal survival, the biogenesis of ribosomes and the maturation of snRNPs and snoRNPs required for pre‐mRNA and pre‐rRNA processing, respectively. In this study, we use ultrastructural analysis, in situ transcription assay and molecular markers for DNA damage, nucleoli and CB components to demonstrate that PC degeneration involves the progressive accumulation of nuclear DNA damage associated with disruption of nucleoli and CBs, disassembly of polyribosomes into monoribosomes, ribophagy and shut down of nucleolar and extranucleolar transcription. Microarray analysis reveals that four genes encoding repressors of nucleolar rRNA synthesis (p53, Rb, PTEN and SNF2) are upregulated in the cerebellum of pcd mice. Collectively, these data support that nucleolar and CB alterations are hallmarks of DNA damage‐induced neurodegeneration.
Journal of Biological Chemistry | 2011
Fernando C. Baltanás; Iñigo Casafont; Vanesa Lafarga; Eduardo Weruaga; José R. Alonso; Maria T. Berciano; Miguel Lafarga
DNA repair protects neurons against spontaneous or disease-associated DNA damage. Dysfunctions of this mechanism underlie a growing list of neurodegenerative disorders. The Purkinje cell (PC) degeneration mutation causes the loss of nna1 expression and is associated with the postnatal degeneration of PCs. This PC degeneration dramatically affects nuclear architecture and provides an excellent model to elucidate the nuclear mechanisms involved in a whole array of neurodegenerative disorders. We used immunocytochemistry for histone variants and components of the DNA damage response, an in situ transcription assay, and in situ hybridization for telomeres to analyze changes in chromatin architecture and function. We demonstrate that the phosphorylation of H2AX, a DNA damage signal, and the trimethylation of the histone H4K20, a repressive mark, in extensive domains of genome are epigenetic hallmarks of chromatin in degenerating PCs. These histone modifications are associated with a large scale reorganization of chromatin, telomere clustering, and heterochromatin-induced gene silencing, all of them key factors in PC degeneration. Furthermore, ataxia telangiectasia mutated and 53BP1, two components of the DNA repair pathway, fail to be concentrated in the damaged chromatin compartments, even though the expression levels of their coding genes were slightly up-regulated. Although the mechanism by which Nna1 loss of function leads to PC neurodegeneration is undefined, the progressive accumulation of DNA damage in chromosome territories irreversibly compromises global gene transcription and seems to trigger PC degeneration and death.
Neuroscience | 2011
David Díaz; Javier S. Recio; Fernando C. Baltanás; Carmela Gómez; Eduardo Weruaga; José R. Alonso
The adult brain is considered to be a radioresistant organ since it is mainly composed of non-dividing cells. However, in adult animals there are a few neurogenic brain areas that are affected by ionizing radiation whose plasticity and capacity for recovery are still unclear. Here, mice were irradiated with a minimal lethal dose of radiation in order to determine its effects on the subventricular zone (SVZ), the rostral migratory stream (RMS), and the olfactory bulb (OB). These regions underwent a dramatic reduction in cell proliferation and ensuing morphological alterations, accompanied by a patent reactive gliosis. Bone marrow stem cell (BMSC) transplants were also performed after the radiation treatment to allow the mouse survival with a view to analyzing long-term effects. Normal proliferation rates were not recovered over time and although bone marrow-derived cells reached the brain, they were not incorporated into the SVZ-RMS-OB pathway in an attempt to rescue the damaged regions. Since neurogenesis produces new interneurones in the OB, thus feeding cell turnover, the volume and lamination of the OB were analyzed. The volume of the OB proved to be dramatically reduced at postnatal day 300 (P300), and this shrinkage affected the periependymal white matter, the granule cell layer, the external plexiform layer, and the glomerular layer. These results should be taken into account in cell therapies employing BMSC, since such cells reach the encephalon, although they cannot restore the damage produced in neurogenic areas. This study thus provides new insight into the long-term effects of ionizing radiation, widely employed in animal experimentation and even in clinical therapies for human beings.
Experimental Neurology | 2009
David Díaz; Jorge Valero; C. Airado; Fernando C. Baltanás; Eduardo Weruaga; José R. Alonso
One of the sexual dimorphic differences in adult rodents is neural proliferation. Here we demonstrate that physiological hormone stages can modulate this proliferation in the adult forebrain. Female mice, both pregnant and synchronized in oestrus, exhibited higher proliferating cell percentages than males in both the rostral migratory stream (RMS) and the olfactory bulb (OB). Moreover, although the hormonal component also influenced the subventricular zone (SVZ), no differences in proliferation were observed in this region. In addition, both groups of females had higher numbers of serotonergic fibres in these regions. Serotonin may therefore be related to the mechanism of action by which hormones can affect cell proliferation of this brain region. We also evaluated cell death in the SVZ in males and females, finding that this was higher in the former. Taken together, our results support the idea that in female rodents more neuroblasts are able to reach the RMS and then proliferate, apoptosis being an additional mechanism affecting the low proliferation of cells in the RMS and OB in males. Thus, proliferation in the RMS is influenced by sexual dimorphism.
Cell Transplantation | 2011
Javier S. Recio; Manuel Alvarez-Dolado; David Díaz; Fernando C. Baltanás; Marina Piquer-Gil; José R. Alonso; Eduardo Weruaga
Many studies have reported the contribution of bone marrow-derived cells (BMDC) to the CNS, raising the possibility of using them as a new source to repair damaged brain tissue or restore neuronal function. This process has mainly been investigated in the cerebellum, in which a degenerative microenvironment has been suggested to be responsible for its modulation. The present study further analyzes the contribution of BMDC to different neural types in other adult brain areas, under both physiological and neurodegenerative conditions, together with the mechanisms of plasticity involved. We grafted genetically marked green fluorescent protein/Cre bone marrow in irradiated recipients: a) the PCD (Purkinje Cell Degeneration) mutant mice, suffering a degeneration of specific neuronal populations at different ages, and b) their corresponding healthy controls. These mice carried the conditional lacZ reporter gene to allow the identification of cell fusion events. Our results demonstrate that BMDC mainly generate microglial cells, although to a lesser extent a clear formation of neuronal types also exists. This neuronal recruitment was not increased by the neurodegenerative processes occurring in PCD mice, where BMDC did not contribute to rescuing the degenerated neuronal populations either. However, an increase in the number of bone marrow-derived microglia was found along the life span in both experimental groups. Six weeks after transplantation more bone marrow-derived microglial cells were observed in the olfactory bulb of the PCD mice compared to the control animals, where the degeneration of mitral cells was in process. In contrast, this difference was not observed in the cerebellum, where Purkinje cell degeneration had been completed. These findings demonstrated that the degree of neurodegenerative environment can foster the recruitment of neural elements derived from bone marrow, but also provide the first evidence that BMDC can contribute simultaneously to different encephalic areas through different mechanisms of plasticity: cell fusion for Purkinje cells and differentiation for olfactory bulb interneurons.
Neuroscience Letters | 2009
Fernando C. Baltanás; Eduardo Weruaga; Jorge Valero; Javier S. Recio; José R. Alonso
Human serum albumin (HSA) is an effective therapeutic agent that protects neurons after cerebral ischemia or related injuries by means of its antioxidant capacity. Our aim was to test whether bovine serum albumin (BSA) might also provide protection, especially against DNA damage. Rat cortical neurons were cultured in both the presence and absence of BSA. To test the neuroprotective role of BSA against DNA damage and neuronal death, primary cultures were investigated using both gamma-H2AX and pATM immunocytochemistry, and the TUNEL assay, respectively. Quantitative analyses revealed that the cultures in the absence of BSA had a higher number of apoptotic neurons. Additionally, neurons showing DNA strand breaks were fewer when BSA was added to the medium. BSA acts as a neuroprotective molecule, reducing both the DNA damage and apoptosis rates. This effect is similar to that described for HSA, probably due to its antioxidant activity. Hence, we have demonstrated that BSA provides a neuroprotective role when DNA damage occurs. Additionally, we suggest that BSA probably shares similarities with HSA in its antioxidant activity, opening new ways in the study of stroke and related brain diseases.
Molecular and Cellular Biology | 2013
Fernando C. Baltanás; Martin Perez-Andres; Alicia Ginel-Picardo; David Díaz; David Jimeno; Pilar Liceras-Boillos; Robert L. Kortum; Lawrence E. Samelson; Alberto Orfao; Eugenio Santos
ABSTRACT Sos1 and Sos2 are ubiquitously expressed, universal Ras guanine nucleotide exchange factors (Ras-GEFs) acting in multiple signal transduction pathways activated by upstream cellular kinases. The embryonic lethality of Sos1 null mutants has hampered ascertaining the specific in vivo contributions of Sos1 and Sos2 to processes controlling adult organism survival or development of hematopoietic and nonhematopoietic organs, tissues, and cell lineages. Here, we generated a tamoxifen-inducible Sos1-null mouse strain allowing analysis of the combined disruption of Sos1 and Sos2 (Sos1/2) during adulthood. Sos1/2 double-knockout (DKO) animals died precipitously, whereas individual Sos1 and Sos2 knockout (KO) mice were perfectly viable. A reduced percentage of total bone marrow precursors occurred in single-KO animals, but a dramatic depletion of B-cell progenitors was specifically detected in Sos1/2 DKO mice. We also confirmed a dominant role of Sos1 over Sos2 in early thymocyte maturation, with almost complete thymus disappearance and dramatically higher reduction of absolute thymocyte counts in Sos1/2 DKO animals. Absolute counts of mature B and T cells in spleen and peripheral blood were unchanged in single-KO mutants, while significantly reduced in Sos1/2 DKO mice. Our data demonstrate functional redundancy between Sos1 and Sos2 for homeostasis and survival of the full organism and for development and maturation of T and B lymphocytes.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2013
David Díaz; Carmela Gómez; Rodrigo Muñoz-Castañeda; Fernando C. Baltanás; José R. Alonso; Eduardo Weruaga
The mammalian olfactory bulb (OB) has all the features of a whole mammalian brain but in a more reduced space: neuronal lamination, sensory inputs, afferences, or efferences to other centers of the central nervous system, or a contribution of new neural elements. Therefore, it is widely considered as “a brain inside the brain.” Although this rostral region has the same origin and general layering as the other cerebral cortices, some distinctive features make it very profitable in experimentation in neurobiology: the sensory inputs are driven directly on its surface, the main output can be accessed anatomically, and new elements appear in it throughout adult life. These three morphological characteristics have been manipulated to analyze further the response of the whole OB. The present review offers a general outlook into the consequences of such experimentation in the anatomy, connectivity and neurochemistry of the OB after (a) sensory deprivation, mainly by naris occlusion; (b) olfactory deinnervation by means of olfactory epithelium damage, olfactory nerve interruption, or even olfactory tract disruption; (c) the removal of the principal neurons of the OB; and (d) management of the arrival of newborn interneurons from the rostral migratory stream. These experiments were performed using surgical or chemical methods, but also by means of the analysis of genetic models, some of whose olfactory components are missing, colorless or mismatching within the wild‐type scenario of odor processing. Anat Rec, 296:1383‐1400, 2013.
Cellular and Molecular Neurobiology | 2009
Fernando C. Baltanás; Eduardo Weruaga; Azucena R. Murias; Carmela Gómez; Gloria G. Curto; José R. Alonso
The Pax6 transcription factor is a key element along brain development in both the visual and olfactory systems. The involvement of Pax6 in neural fate is well documented in the visual system, whereas in the olfactory system, and in particular in the olfactory bulb (OB), its expression during adulthood has only begun to be elucidated. In the OB, the modulation of primary sensory information is first performed by periglomerular cells (PG). A considerable body of information has unveiled the neurochemical heterogeneity of these neurons. Thus it is well known that Pax6 coexists with dopaminergic/GABAergic mouse PG. However, the presence of this transcription factor in other mouse PG subpopulations has not been studied. Here, we analyzed whether Pax6 is expressed in PG containing the calcium-binding proteins neurocalcin and parvalbumin, and the neuropeptide cholecystokinin. Our results show that Pax6 is not expressed by these PG subpopulations, suggesting that it is mainly restricted to GABAergic PG populations. These findings provide new data in the chemical characterization of mouse Pax6-positive PG.
Glia | 2013
Fernando C. Baltanás; Maria T. Berciano; Jorge Valero; Carmela Gómez; David Díaz; José R. Alonso; Miguel Lafarga; Eduardo Weruaga
Purkinje Cell Degeneration (PCD) mice harbor a nna1 gene mutation which leads to an early and rapid degeneration of Purkinje cells (PC) between the third and fourth week of age. This mutation also underlies the death of mitral cells (MC) in the olfactory bulb (OB), but this process is slower and longer than in PC. No clear interpretations supporting the marked differences in these neurodegenerative processes exist. Growing evidence suggests that either beneficial or detrimental effects of gliosis in damaged regions would underlie these divergences. Here, we examined the gliosis occurring during PC and MC death in the PCD mouse. Our results demonstrated different glial reactions in both affected regions. PC disappearance stimulated a severe gliosis characterized by strong morphological changes, enhanced glial proliferation, as well as the release of pro‐inflammatory mediators. By contrast, MC degeneration seems to promote a more attenuated glial response in the PCD OB compared with that of the cerebellum. Strikingly, cerebellar oligodendrocytes died by apoptosis in the PCD, whereas bulbar ones were not affected. Interestingly, the level of nna1 mRNA under normal conditions was higher in the cerebellum than in the OB, probably related to a faster neurodegeneration and stronger glial reaction in its absence. The glial responses may thus influence the neurodegenerative course in the cerebellum and OB of the mutant mouse brain, providing harmful and beneficial microenvironments, respectively.