Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando Calvo is active.

Publication


Featured researches published by Fernando Calvo.


Nature Cell Biology | 2013

Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts

Fernando Calvo; Nil Ege; Araceli Grande-García; Steven Hooper; Robert P. Jenkins; Shahid I. Chaudhry; Kevin J. Harrington; Peter Williamson; Emad Moeendarbary; Guillaume Charras; Erik Sahai

To learn more about cancer-associated fibroblasts (CAFs), we have isolated fibroblasts from different stages of breast cancer progression and analysed their function and gene expression. These analyses reveal that activation of the YAP transcription factor is a signature feature of CAFs. YAP function is required for CAFs to promote matrix stiffening, cancer cell invasion and angiogenesis. Remodelling of the ECM and promotion of cancer cell invasion requires the actomyosin cytoskeleton. YAP regulates the expression of several cytoskeletal regulators, including ANLN and DIAPH3, and controls the protein levels of MYL9 (also known as MLC2). Matrix stiffening further enhances YAP activation, thus establishing a feed-forward self-reinforcing loop that helps to maintain the CAF phenotype. Actomyosin contractility and Src function are required for YAP activation by stiff matrices. Further, transient ROCK inhibition is able to disrupt the feed-forward loop, leading to a long-lasting reversion of the CAF phenotype.


Molecular and Cellular Biology | 2006

Distinct Utilization of Effectors and Biological Outcomes Resulting from Site-Specific Ras Activation: Ras Functions in Lipid Rafts and Golgi Complex Are Dispensable for Proliferation and Transformation

David Matallanas; Victoria Sanz-Moreno; Imanol Arozarena; Fernando Calvo; Lorena Agudo-Ibáñez; Eugenio Santos; Maria T. Berciano; Piero Crespo

ABSTRACT Ras proteins are distributed in different types of plasma membrane microdomains and endomembranes. However, how microlocalization affects the signals generated by Ras and its subsequent biological outputs is largely unknown. We have approached this question by selectively targeting RasV12 to different cellular sublocalizations. We show here that compartmentalization dictates Ras utilization of effectors and the intensity of its signals. Activated Ras can evoke enhanced proliferation and transformation from most of its platforms, with the exception of the Golgi complex. Furthermore, signals that promote survival emanate primarily from the endoplasmic reticulum pool. In addition, we have investigated the need for the different pools of endogenous Ras in the conveyance of upstream mitogenic and transforming signals. Using targeted RasN17 inhibitory mutants and in physiological contexts such as H-Ras/N-Ras double knockout fibroblasts, we demonstrate that Ras functions at lipid rafts and at the Golgi complex are fully dispensable for proliferation and transformation.


Cell Reports | 2015

Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization

Yaiza del Pozo Martin; Danielle Park; Luigi Ombrato; Fernando Calvo; Probir Chakravarty; Bradley Spencer-Dene; Stefanie Derzsi; Caroline S. Hill; Erik Sahai; Ilaria Malanchi

Summary During metastatic colonization, tumor cells must establish a favorable microenvironment or niche that will sustain their growth. However, both the temporal and molecular details of this process remain poorly understood. Here, we found that metastatic initiating cells (MICs) exhibit a high capacity for lung fibroblast activation as a result of Thrombospondin 2 (THBS2) expression. Importantly, inhibiting the mesenchymal phenotype of MICs by blocking the epithelial-to-mesenchymal transition (EMT)-associated kinase AXL reduces THBS2 secretion, niche-activating ability, and, consequently, metastatic competence. Subsequently, disseminated metastatic cells revert to an AXL-negative, more epithelial phenotype to proliferate and decrease the phosphorylation levels of TGF-β-dependent SMAD2-3 in favor of BMP/SMAD1-5 signaling. Remarkably, newly activated fibroblasts promote this transition. In summary, our data reveal a crosstalk between cancer cells and their microenvironment whereby the EMT status initially triggers and then is regulated by niche activation during metastatic colonization.


BioEssays | 2010

The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies.

Fernando Calvo; Lorena Agudo-Ibáñez; Piero Crespo

Recent discoveries have suggested the concept that intracellular signals are the sum of multiple, site‐specified subsignals, rather than single, homogeneous entities. In the context of cancer, searching for compounds that selectively block subsignals essential for tumor progression, but not those regulating “house‐keeping” functions, could help in producing drugs with reduced side effects compared to compounds that block signaling completely. The Ras‐ERK pathway has become a paradigm of how space can differentially shape signaling. Today, we know that Ras proteins are found in different plasma membrane microdomains and endomembranes. At these localizations, Ras is subject to site‐specific regulatory mechanisms, distinctively engaging effector pathways and switching‐on diverse genetic programs to generate different biological responses. The Ras effector pathway leading to ERKs activation is also under strict, space‐related regulatory processes. These findings may open a gate for aiming at the Ras‐ERK pathway in a spatially restricted fashion, in our quest for new anti‐tumor therapies.


Current Opinion in Cell Biology | 2011

Cell communication networks in cancer invasion

Fernando Calvo; Erik Sahai

The invasion of cancer is a major clinical problem. It is now apparent that invasion is not a simply a cancer cell autonomous process but relies on a complex network of paracrine interactions. Furthermore, this network can change as cancer cells disseminate. Here we summarise the key components of the network and their mechanisms of communication. Finally, we discuss the difficulties and opportunities that this complex network of interactions presents during cancer therapy.


Journal of Cell Biology | 2010

ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes

Javier Vía Rodríguez; Fernando Calvo; José Manuel Rodríguez González; Berta Casar; Vicente Andrés; Piero Crespo

As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation.


Nature Cell Biology | 2011

RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation

Fernando Calvo; Victoria Sanz-Moreno; Lorena Agudo-Ibáñez; Fredrik Wallberg; Erik Sahai; Christopher J. Marshall; Piero Crespo

Individual tumour cells move in three-dimensional environments with either a rounded or an elongated ‘mesenchymal’ morphology. These two modes of movement are tightly regulated by Rho family GTPases: elongated movement requires activation of Rac1, whereas rounded/amoeboid movement engages specific Cdc42 and Rho signalling pathways. In siRNA screens targeting the genes encoding guanine nucleotide exchange factors (GEFs), we found that the Ras GEF RasGRF2 regulates conversion between elongated- and rounded-type movement. RasGRF2 suppresses rounded movement by inhibiting the activation of Cdc42 independently of its capacity to activate Ras. RasGRF2 and RasGRF1 directly bind to Cdc42, outcompeting Cdc42 GEFs, thereby preventing Cdc42 activation. By this mechanism, RasGRFs regulate other Cdc42-mediated cellular processes such as the formation of actin spikes, transformation and invasion in vitro and in vivo. These results demonstrate a role for RasGRF GEFs as negative regulators of Cdc42 activation.


Nature Communications | 2016

Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness.

Avgustinova A; Marjan Iravani; David Robertson; Antony Fearns; Qiong Gao; Pamela Klingbeil; Hanby Am; Speirs; Erik Sahai; Fernando Calvo; Clare M. Isacke

Stromal fibroblast recruitment to tumours and activation to a cancer-associated fibroblast (CAF) phenotype has been implicated in promoting primary tumour growth and progression to metastatic disease. However, the mechanisms underlying the tumour:fibroblast crosstalk that drive the intertumoural stromal heterogeneity remain poorly understood. Using in vivo models we identify Wnt7a as a key factor secreted exclusively by aggressive breast tumour cells, which induces CAF conversion. Functionally, this results in extracellular matrix remodelling to create a permissive environment for tumour cell invasion and promotion of distant metastasis. Mechanistically, Wnt7a-mediated fibroblast activation is not dependent on classical Wnt signalling. Instead, we demonstrate that Wnt7a potentiates TGFβ receptor signalling both in 3D in vitro and in vivo models, thus highlighting the interaction between two of the key signalling pathways in development and disease. Importantly, in clinical breast cancer cohorts, tumour cell Wnt7a expression correlates with a desmoplastic, poor-prognosis stroma and poor patient outcome.


Genes & Cancer | 2011

Ras, an Actor on Many Stages: Posttranslational Modifications, Localization, and Site-Specified Events

Imanol Arozarena; Fernando Calvo; Piero Crespo

Among the wealth of information that we have gathered about Ras in the past decade, the introduction of the concept of space in the field has constituted a major revolution that has enabled many pieces of the Ras puzzle to fall into place. In the early days, it was believed that Ras functioned exclusively at the plasma membrane. Today, we know that within the plasma membrane, the 3 Ras isoforms-H-Ras, K-Ras, and N-Ras-occupy different microdomains and that these isoforms are also present and active in endomembranes. We have also discovered that Ras proteins are not statically associated with these localizations; instead, they traffic dynamically between compartments. And we have learned that at these localizations, Ras is under site-specific regulatory mechanisms, distinctively engaging effector pathways and switching on diverse genetic programs to generate different biological responses. All of these processes are possible in great part due to the posttranslational modifications whereby Ras proteins bind to membranes and to regulatory events such as phosphorylation and ubiquitination that Ras is subject to. As such, space and these control mechanisms act in conjunction to endow Ras signals with an enormous signal variability that makes possible its multiple biological roles. These data have established the concept that the Ras signal, instead of being one single, homogeneous entity, results from the integration of multiple, site-specified subsignals, and Ras has become a paradigm of how space can differentially shape signaling.


Molecular Cancer Research | 2008

c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation.

José P. Vaqué; Belén Fernández-Garcı́a; Pablo García-Sanz; Nuria Ferrándiz; Gabriel Bretones; Fernando Calvo; Piero Crespo; Maria Carmen Marin; Javier León

Although mutant Ras proteins were originally described as transforming oncoproteins, they induce growth arrest, senescence, and/or differentiation in many cell types. c-Myc is an oncogenic transcription factor that cooperates with Ras in cellular transformation and oncogenesis. However, the Myc-Ras relationship in cellular differentiation is largely unknown. Here, we have analyzed the effects of c-Myc on PC12-derived cells (UR61 cell line), harboring an inducible N-Ras oncogene. In these cells, Ras activation induces neuronal-like differentiation by a process involving c-Jun activation. We found that c-Myc inhibited Ras-mediated differentiation by a mechanism that involves the blockade of c-Jun induction in response to Ras signal. Accordingly, ectopically expressed c-Jun could bypass c-Myc impediment of Ras-induced differentiation and activator protein 1 activation. Interestingly, it did not rescue the proliferative arrest elicited by Ras and did not enhance the differentiation-associated apoptosis. The blockade of Ras-mediated induction of c-Jun takes place at the level of c-Jun proximal promoter. Mutational analysis revealed that c-Myc regions involved in DNA binding and transactivation are required to block differentiation and c-Jun induction. c-Myc does not seem to require Miz-1 to inhibit differentiation and block c-Jun induction. Furthermore, Max is not required for c-Myc activity, as UR61 cells lack a functional Max gene. c-Myc–inhibitory effect on the Ras/c-Jun connection is not restricted to UR61 cells as it can occur in other cell types as K562 or HEK293. In conclusion, we describe a novel interplay between c-Myc and c-Jun that controls the ability of Ras to trigger the differentiation program of pheochromocytoma cells. (Mol Cancer Res 2008;6(2):325–39)

Collaboration


Dive into the Fernando Calvo's collaboration.

Top Co-Authors

Avatar

Piero Crespo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Sahai

London Research Institute

View shared research outputs
Top Co-Authors

Avatar

Romana Ranftl

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Lim

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Clare M. Isacke

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Magnani

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Pamela Klingbeil

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge