Fernando Casas
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando Casas.
Heart | 2008
Zoran B. Popović; Richard A. Grimm; Ali Ahmad; Miguel Favia; George Dan; Pascal Lim; Fernando Casas; Neil L. Greenberg; James D. Thomas
Background: Heart failure patients who are candidates for CRT frequently display longitudinal rotation (LR) – a swinging motion of the heart when imaged in a horizontal long-axis plane. Objectives: To identify the magnitude and predictors of LR in patients with ischaemic (ICM) and idiopathic dilated (DCM) cardiomyopathy, and to assess predictive value of LR in patients undergoing cardiac resynchronisation therapy (CRT). Design and setting: A retrospective study in a tertiary heart care setting. Methods: Echocardiography was performed in 45 ICM and 41 DCM patients who were CRT candidates and 16 control subjects. Global LR, segmental strains and segmental LR were assessed from echocardiograms using speckle tracking. Repeat echocardiography >40 days after the beginning of CRT was performed in 64 patients. Results: While DCM patients with QRS duration of both <130 ms and ⩾130 ms displayed significant clockwise LR (p<0.001 for both vs 0), ICM patients and control subjects had LR that did not differ from 0. The most significant LR predictor was end-diastolic volume (p<0.001) followed by the absence of ischaemia (p<0.001) and QRS duration (p = 0.05). DCM patients with prominent clockwise LR had lower septal but higher lateral strains than DCM patients with minimal LR, or ICM patients with counterclockwise LR. LR correlated with decrease of end-systolic volume in DCM (r = 0.49, p = 0.004), while no relationship was observed in ICM. Conclusion: Clockwise LR is linked to presence of DCM, with the small impact of QRS duration. LR is a moderately strong predictor of end-systolic volume decrease during CRT in DCM.
Artificial Organs | 2012
Marcus Granegger; Francesco Moscato; Fernando Casas; Georg Wieselthaler; Heinrich Schima
Estimation of instantaneous flow in rotary blood pumps (RBPs) is important for monitoring the interaction between heart and pump and eventually the ventricular function. Our group has reported an algorithm to derive ventricular contractility based on the maximum time derivative (dQ/dt(max) as a substitute for ventricular dP/dt(max) ) and pulsatility of measured flow signals. However, in RBPs used clinically, flow is estimated with a bandwidth too low to determine dQ/dt(max) in the case of improving heart function. The aim of this study was to develop a flow estimator for a centrifugal pump with bandwidth sufficient to provide noninvasive cardiac diagnostics. The new estimator is based on both static and dynamic properties of the brushless DC motor. An in vitro setup was employed to identify the performance of pump and motor up to 20 Hz. The algorithm was validated using physiological ventricular and arterial pressure waveforms in a mock loop which simulated different contractilities (dP/dt(max) 600 to 2300 mm Hg/s), pump speeds (2 to 4 krpm), and fluid viscosities (2 to 4 mPa·s). The mathematically estimated pump flow data were then compared to the datasets measured in the mock loop for different variable combinations (flow ranging from 2.5 to 7 L/min, pulsatility from 3.5 to 6 L/min, dQ/dt(max) from 15 to 60 L/min/s). Transfer function analysis showed that the developed algorithm could estimate the flow waveform with a bandwidth up to 15 Hz (±2 dB). The mean difference between the estimated and measured average flows was +0.06 ± 0.31 L/min and for the flow pulsatilities -0.27 ± 0.2 L/min. Detection of dQ/dt(max) was possible up to a dP/dt(max) level of 2300 mm Hg/s. In conclusion, a flow estimator with sufficient frequency bandwidth and accuracy to allow determination of changes in ventricular contractility even in the case of improving heart function was developed.
Asaio Journal | 2007
Fernando Casas; Nisar Ahmed; Andrew Reeves
A rotary blood pump fuzzy logic flow controller without flow sensors was developed and tested in vitro. The controller, implemented in LabView, was set to maintain a flow set point in the presence of external pressure disturbances. Flow was estimated as a function of measured pump’s delta P and speed, using a steady-state, nonlinear approximation. The fuzzy controller used the pump’s flow estimate and delta P as feedback variables. The defuzzified control output manipulated the pump speed. Membership functions included flow error, delta P, and pump speed. Experimental runs in a mock loop (water/glycerin 3.5 cPs, 37°C), using the estimated flow, were compared with those using a Transonic flow meter for nine conditions of flow and delta P (4 to 6 L/min, 150 to 350 mm Hg). Pressure disturbances generated by a servo pinch valve ranged from ±23 to ±47 mm Hg. Results indicated that the fuzzy controller ably regulated the flow set point to within ±10% of the baseline even under large swings in pressure. There was no difference in controller performance between the ultrasonic flow measurement and the estimated flow calculation scenarios. These tests demonstrated that the fuzzy controller is capable of rejecting disturbances and regulating flow to acceptable limits while using a flow estimate.
Asaio Journal | 2007
Diyar Saeed; Stephan Weber; Yoshio Ootaki; Nicole Mielke; Chiyo Ootaki; Masatoshi Akiyama; Tetsuya Horai; Jacquelyn Catanese; Fumoto Hideyuki; Raymond Dessoffy; David T. Dudzinski; Lei Gu; Fernando Casas; William A. Smith; Kiyotaka Fukamachi; Brian W. Duncan
The PediPump is a small ventricular assist device (VAD) with a hydraulic output range designed to support children from newborns to adolescents. The present report describes our initial evaluation of the PediPump as a left VAD in an acute sheep model. The PediPump was implanted in two sheep (50.8 and 62.7 kg). Pump speed was adjusted to achieve a flow of 2 L/min with the naturally occurring preload and afterload conditions to evaluate pump performance under a steady hemodynamic state for 4 hours. Upon completion, pump performance was evaluated under various blood pressure and heart rate conditions. During steady-state evaluations, the ascending aortic flow and pump speed varied slightly depending on systemic arterial pressure variations. During the hemodynamic manipulation studies, flows ranged between 0.5 and 3.2 L/min with pump speeds of 5,200–16,200 rpm and motor current of 0.06–0.75 A. The PediPump demonstrated good initial hemodynamic performance for use as an implantable left VAD. However, some depositions were detected at the time of explanation, mainly at the rear of the pump. We are continuing with further acute studies to evaluate pump performance in anticipation of beginning chronic studies to evaluate long-term biocompatibility.
Asaio Journal | 2005
Stephan Weber; Keiji Kamohara; Ryan S. Klatte; Viviane Luangphakdy; Christine R. Flick; Ji Feng Chen; Fernando Casas; Yoshio Ootaki; Michael W. Kopcak; Masatoshi Akiyama; Gordon Hirschman; Peter A. Chapman; Arthur Donahue; William Wetterau; C. J. Prisco; Roy Mast; Craig Sherman; Kiyotaka Fukamachi; William A. Smith
The MagScrew Total Artificial Heart (TAH) system is the result of a close collaboration among the Cleveland Clinic Foundation, Foster Miller Technologies, Wilson Greatbatch Ltd, and Whalen Biomedical Inc. The system components are the thoracic blood pumping unit with attached compliance chamber and refill port, implantable electronic control unit, implantable battery pack, transcutaneous energy transmission system, external battery pack, and a telemetry system for communication with the electronic control unit. System in vitro tests are underway for system characterization and durability demonstration, whereas in vivo tests were conducted to evaluate system performance and biocompatibility under physiologic conditions. The passively filling pump uses a left master alternate left and right ejection control mode and has a Starling law–like response to venous pressure. The in vitro tests documented excellent hydraulic pump performance with high device output of over 9 l/min at left atrial pressures below 12 mm Hg. Atrial balance was well maintained under all test conditions. The in vivo tests demonstrated good biocompatibility without use of anticoagulant therapy. Experimental durations have ranged between 0 and 92 days. Postexplant evaluation of tissue samples did not reveal any sign of thromboembolic events or tissue damage due to device operation.
Asaio Journal | 2005
Fernando Casas; Andrew Reeves; David M. Dudzinski; Stephan Weber; Markus Lorenz; Masatoshi Akiyama; Keiji Kamohara; Michael W. Kopcak; Yoshio Ootaki; Firas Zahr; Martin Sinkewich; Robert E. Foster; Kiyotaka Fukamachi; William A. Smith
The Cleveland Clinic Foundation CPB/ECMO Initiative Forward Casualty Management System is an economical, compact, transportable, disposable system designed to permit a rapid expansion of trauma management services requiring cardiopulmonary bypass (CPB) or extracorporeal membrane oxygenation (ECMO) pulmonary support. The system, composed of a rotary blood pump, a pump motor driver, and an electronic control console as the blood pumping subsystem, also includes commonly used compatible commercial oxygenators, venous reservoirs, and cannulae. In vitro durability testing accumulated over 100 hours without failure. In vivo reliability was tested in 10 calves under general anesthesia during 6 hours of CPB and ECMO under full heparinization at nominal operating conditions of 4–5 l/min and 2–4 l/min blood flow respectively, and mean arterial pressures between 65 and 100 mm Hg. A mean time to failure of 57 hours was reached during the animal series. Results of these test series demonstrated that this system has the capability to reliably operate during a 6-hour conventional CPB or ECMO procedure, while providing flexibility and ease of use for the operator.
Asaio Journal | 2015
Kelly J. Mesa; Antonio Ferreira; Samir Castillo; Carlos Reyes; Justin Wolman; Fernando Casas
Investigation of the miniature ventricular assist device (MVAD) pump motor stator core loss behavior was conducted. During operation, the ferromagnetic core in the pump’s motor is magnetized by alternating magnetic fields, which, in turn, create intrinsic energy losses in the core material; these losses are known as core losses. A core loss fixture and a method to characterize the magnetic behavior of the MVAD pump stator over a range of frequencies were developed. The MVAD pump motor design features a three phase brushless DC stator with ferromagnetic laminations and copper wire windings arranged in a six slot configuration. The stator’s magnetic behavior is important because its core magnetic losses impact pump system efficiency. A system to measure the core loss of MVAD pump stators was developed using a custom core loss fixture consisting of 16 copper wire turns wound in a closed loop geometry bundle; the stator under test was then placed within this bundle. The instrumentation consisted of a signal generator, a power amplifier, and a power analyzer. Power analyzer parameters of current, voltage, and power were collected for several runs with a sinusoidal frequency sweep of 0 to 50 kHz; data were collected for the fixture with and without stators. The magnetic losses inherent to the fixture were characterized independently as a baseline presenting a flat frequency response. The core loss power measurements of individual stators yielded a characteristic bandpass frequency response morphology with a peak core loss found around 2.3 to 2.5 kHz. In conclusion, this method could be used to describe the transfer function of the stator’s core magnetic behavior. It also has the potential to be used for future motor evaluation and for investigation of core loss performance variability between different stators during manufacturing operations. CAUTION: Investigational device. Limited by United States law to investigational use.
Artificial Organs | 2014
Hideyuki Fumoto; Akira Shiose; Christine R. Flick; Lawrence D. Noble; David T. Dudzinski; Fernando Casas; Tohru Takaseya; Yoko Arakawa; Kiyotaka Fukamachi; William A. Smith; Brian W. Duncan
The PediPump was implanted in six healthy lambs (mean 25.6 ± 1.4 kg) between the left ventricular apex and the descending aorta to evaluate in vivo performance for up to 30 days. Anticoagulation was achieved by continuous heparin infusion. Three animals were euthanized prematurely, two because of respiratory dysfunction and one because of deteriorating pump performance resulting from thrombus formation inside the pump. Three lambs were electively sacrificed 30 days after implantation; all had stable hemodynamics and minimal hemolysis, as indicated by low plasma free hemoglobin (2.5 ± 3.1 mg/dL). Mean 30-day pump flow was 1.8 ± 0.1 L/min at a pump speed of 12 200 ± 400 rpm. Neither activated clotting time nor activated partial thromboplastin time followed the changes in heparin dose. At necropsy, depositions were observed at the front (n = 1) and rear rotor axial positioning stops (n = 4); improved polishing techniques on the stationary stop surfaces and the addition of a hard-carbon, thin-film coating on the rotating stop of the pumps used for the last two experiments addressed the deposition seen earlier. In conclusion, the PediPump showed excellent hydraulic performance and minimal hemolysis during support for up to 30 days. Depositions observed at the axial positioning stops in earlier experiments were addressed by design and material refinements. We continue to focus on developing effective anticoagulation management in the lamb model as well as on further evaluating and demonstrating pump biocompatibility.
Artificial Organs | 2010
Fernando Casas; Stephan Weber; Ryan S. Klatte; Vikash Ravi Goel; William A. Smith
MagScrew total artificial heart (TAH) external battery pack (EBP) cycle bench testing continued over a period of 18 months using two fresh Wilson Greatbatch lithium ion EBPs during continuous charge and discharge cycles under a simulated TAH system current requirement. The same electronic load developed for our initial testing was used to simulate the MagScrew current waveforms typically observed during nominal operation. The current load profiles for this test were modified from the ones previously described and applied to the EBP under test during a voltage-defined discharge cycle. The test ended when EBP#2 reached end of life at 1450 cycles. At that point, EBP#1 remained healthy with a capacity of 175 min until full discharge. Performance of EBP#2 was still within expected ranges. Performance of EBP#1 exceeded expectations. These differences are probably caused by slight manufacturing changes. More tests will provide additional data to define a statistical distribution to better characterize EBP performance. In conclusion, endurance performance of the EBP remained satisfactory.
Archive | 2012
Fernando Casas; Carlos Reyes