Fernando de la Cuesta
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando de la Cuesta.
Kidney International | 2014
Maria Posada-Ayala; Irene Zubiri; Marta Martin-Lorenzo; Aroa Sanz-Maroto; Dolores Molero; Laura Gonzalez-Calero; Beatriz Fernandez-Fernandez; Fernando de la Cuesta; Carlos M. Laborde; Maria G. Barderas; Alberto Ortiz; Gloria Alvarez-Llamas
The prevalence of chronic kidney disease (CKD) is increasing and frequently progresses to end-stage renal disease. There is an urgent demand to discover novel markers of disease that allow monitoring disease progression and, eventually, response to treatment. To identify such markers, and as a proof of principle, we determined if a metabolite signature corresponding to CKD can be found in urine. In the discovery stage, we analyzed the urine metabolome by NMR of 15 patients with CKD and compared that with the metabolome of 15 healthy individuals and found a classification pattern clearly indicative of CKD. A validation cohort of urine samples from an additional 16 patients with CKD and 15 controls was then analyzed by (Selected Reaction Monitoring) liquid chromatography-triple quadrupole mass spectrometry and indicated that a group of seven urinary metabolites differed between CKD and non-CKD urine samples. This profile consisted of 5-oxoproline, glutamate, guanidoacetate, α-phenylacetylglutamine, taurine, citrate, and trimethylamine N-oxide. Thus, we identified a panel of urine metabolites differentially present in urine that may help identify and monitor patients with CKD.
Molecular & Cellular Proteomics | 2011
Fernando de la Cuesta; Gloria Alvarez-Llamas; Aroa S. Maroto; Alicia Donado; Irene Zubiri; Maria Posada; Luis Rodríguez Padial; Ángel González Pinto; Maria G. Barderas
Coronary atherosclerosis still represents the major cause of mortality in western societies. Initiation of atherosclerosis occurs within the intima, where major histological and molecular changes are produced during pathogenesis. So far, proteomic analysis of the atherome plaque has been mainly tackled by the analysis of the entire tissue, which may be a challenging approach because of the great complexity of this sample in terms of layers and cell type composition. Based on this, we aimed to study the intimal proteome from the human atherosclerotic coronary artery. For this purpose, we analyzed the intimal layer from human atherosclerotic coronaries, which were isolated by laser microdissection, and compared with those from preatherosclerotic coronary and radial arteries, using a two-dimensional Differential-In-Gel-Electrophoresis (DIGE) approach. Results have pointed out 13 proteins to be altered (seven up-regulated and six down-regulated), which are implicated in the migrative capacity of vascular smooth muscle cells, extracellular matrix composition, coagulation, apoptosis, heat shock response, and intraplaque hemorrhage deposition. Among these, three proteins (annexin 4, myosin regulatory light 2, smooth muscle isoform, and ferritin light chain) constitute novel atherosclerotic coronary intima proteins, because they were not previously identified at this human coronary layer. For this reason, these novel proteins were validated by immunohistochemistry, together with hemoglobin and vimentin, in an independent cohort of arteries.
BioMed Research International | 2011
Maria G. Barderas; Carlos M. Laborde; Maria Posada; Fernando de la Cuesta; Irene Zubiri; Gloria Alvarez-Llamas
Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly with reference to the cardiovascular field.
Journal of Proteomics | 2012
Fernando de la Cuesta; Maria G. Barderas; Enrique Calvo; Irene Zubiri; Aroa S. Maroto; Verónica M. Darde; Tatiana Martín-Rojas; Felix Gil-Dones; Maria Posada-Ayala; Teresa Tejerina; Juan Antonio López; Gloria Alvarez-Llamas
AIMS Early detection of cardiovascular diseases and knowledge of underlying mechanisms is essential. Tissue secretome studies resemble more closely to the in vivo situation, showing a much narrower protein concentrations dynamic range than plasma. This study was aimed to the analysis of human arterial tissue secretome and to the quantitative comparison of healthy and atherosclerotic secretome to discover proteins with key roles in atherosclerosis development. METHODS AND RESULTS Secretomes from three biological replicates of human atherosclerotic coronary arteries (APC), preatherosclerotic coronaries (PC) and mammaries (M) were analyzed by LC-MS/MS. The identified proteins were submitted to Ingenuity Pathway Analysis (IPA) tool. Label-free MS/MS based quantification was performed and validated by immunohistochemistry. 64 proteins were identified in the 3 replicates of at least one of the 3 groups and 15 secreted proteins have not been previously reported in plasma. Four proteins were significantly released in higher amounts by mammary tissue: gelsolin, vinculin, lamin A/C and phosphoglucomutase 5. CONCLUSION The study of tissue secretome reveals key proteins involved in atherosclerosis which have not been previously reported in plasma. Novel proteins are here highlighted which could be potential therapeutic targets in clinical practice. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Journal of Proteome Research | 2010
Verónica M. Darde; Fernando de la Cuesta; Félix Gil Dones; Gloria Alvarez-Llamas; Maria G. Barderas
Acute coronary syndrome (ACS) is triggered by the occlusion of a coronary artery usually due to the thrombosis caused by an atherosclerotic plaque. The identification of proteins directly involved in the pathophysiological events underlying ACS will enable more precise diagnoses and a more accurate prognosis to be determined. Accordingly, we have performed a longitudinal study of the plasma proteome in ACS patients by 2-DE and DIGE. Plasma samples from patients, healthy controls, and stable coronary artery disease (CAD) patients were immunodepleted of the six most abundant proteins, and they were analyzed in parallel at four different times: 0 (on admission) and after 4, 60, and 180 days. From a total of 1400 spot proteins analyzed, 33 proteins were differentially expressed in ACS patients when compared with control subjects/stable patients. A small group of seven proteins that appear to be altered at admission remain affected for 6 months and also in the stable CAD patients. Interestingly, the maximum number of altered proteins was observed in the stable CAD patients. Some of the proteins identified had been previously associated with ACS whereas others (such as Alpha-1-B-glycoprotein, Hakata antigen, Tetranectin, Tropomyosin 4) constitute novel proteins that are altered in this pathology.
Expert Review of Proteomics | 2008
Gloria Alvarez-Llamas; Fernando de la Cuesta; Maria G. Barderas; Verónica M. Darde; Luis Rodríguez Padial
Vascular proteomics is providing two main types of data: proteins that actively participate in vascular pathophysiological processes and novel protein candidates that can potentially serve as useful clinical biomarkers. Although both types of proteins can be identified by similar proteomic strategies and methods, it is important to clearly distinguish biomarkers from mediators of disease. A particular protein, or group of proteins, may participate in a pathogenic process but not serve as an effective biomarker. Alternatively, a useful biomarker may not mediate pathogenic pathways associated with disease (i.e., C-reactive protein). To date, there are no clear successful examples in which discovery proteomics has led to a novel useful clinical biomarker in cardiovascular diseases. Nevertheless, new sources of biomarkers are being explored (i.e., secretomes, circulating cells, exosomes and microparticles), an increasing number of novel proteins involved in atherogenesis are constantly described, and new technologies and analytical strategies (i.e., quantitative proteomics) are being developed to access low abundant proteins. Therefore, this presages a new era of discovery and a further step in the practical application to diagnosis, prognosis and early action by medical treatment of cardiovascular diseases.
Journal of Proteomics | 2013
Fernando de la Cuesta; Irene Zubiri; Aroa S. Maroto; Maria Posada; Luis Rodríguez Padial; Gloria Alvarez-Llamas; Maria G. Barderas
UNLABELLED Fatal events derived from coronary atherosclerosis are the major cause of mortality in the developed countries. Proteomic analysis of the atherosclerotic coronary artery has been mainly carried out with whole tissue extracts, making it difficult to distinguish the alterations present in every region of the plaque. For this reason, we have recently described proteins altered in the human coronary intima layer as a consequence of the atherosclerotic disease. In order to complement this work, we aimed here to analyze proteomic alterations occurring within the human coronary media layer. Media layers from human atherosclerotic and preatherosclerotic coronary arteries were isolated by laser microdissection and compared by means of two-dimensional differential in-gel electrophoresis (2D-DIGE). Twelve proteins were found altered, 5 of which were cytoskeleton proteins decreased in the atherosclerotic coronary media. Among these, 4 proteins (filamin A, gelsolin, vinculin and vimentin) were further analyzed by immunohistochemistry and its alteration validated. Such cytoskeleton deregulation evidence, at the molecular level, explains how medial vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype. Moreover, an oxidative stress response within the media, leaded by superoxide dismutase 3 and glycolysis activation, may have been triggered by atherosclerosis development. BIOLOGICAL SIGNIFICANCE Although atherosclerosis is mainly a disease of the intima layer, the media plays an important role in the initiation of the pathology, as a source of vascular smooth muscle cells (VSMCs), which migrate into the intima and may additionally be affected by intima layer degeneration through pathogenesis. In fact, intimal thickening has been related to a mechanical compression of the media layer, resulting on a significant thinning of the latter in the atherosclerotic carotid and coronary arteries, which may provoke alterations at a molecular level. Here we provide the first differential proteomic analysis of atherosclerotic coronary media layer, reporting important alterations of this sub-proteome with pathogenesis. It is important to remark a cytoskeleton deregulation observed at the molecular level within VSMCs, which may be explained by a contractile to synthetic phenotype switch. Moreover, atherosclerosis seems to trigger an oxidative stress response within the coronary media layer.
Proteomics | 2009
Maria G. Barderas; José Tuñón; Verónica M. Darde; Fernando de la Cuesta; José Julio Jiménez-Nacher; Nieves Tarín; Lorenzo López-Bescós; Jesús Egido
Aggressive treatment with high‐dose atorvastatin reduces more effectively the incidence of cardiovascular events than moderate statin therapy. The mechanism of this benefit has not been fully elucidated. In order to know the potential effects of statin treatment on the protein expression of circulating monocytes in acute coronary syndrome (ACS) patients, a proteomic analysis of these cells was carried out by 2‐DE and MS. Twenty‐five patients with non‐ST‐elevation acute coronary syndrome (NSTEACS) were randomized, the fourth day after admission, to receive ATV 80 mg/dL (n = 14) or conventional treatment (CT) (n = 11), for two months. Blood was withdrawn at the end of the treatment, and monocytes were extracted for proteomic analysis and their protein expression patterns determined. Age, sex, total cholesterol, LDL, HDL, triglycerides, body mass index, presence of hypertension, diabetes, and smoking status were not significantly different between the two groups of patients. The expression of 20 proteins was modified by intensive ATV. Among the most relevant results stand out the normalization by intensive ATV treatment of the expression of proteins that modulate inflammation and thrombosis such as protein disulfide isomerase ER60 (PDI), Annexin I, and prohibitin, or that have other protective effects as HSP‐70. Thus, this approach shed light at the molecular level of the beneficial mechanisms of anti‐atherothrombotic drugs.
Expert Review of Proteomics | 2009
Fernando de la Cuesta; Gloria Alvarez-Llamas; Felix Gil-Dones; Tatiana Martín-Rojas; Irene Zubiri; Carlos Pastor; Maria G. Barderas
Atherosclerosis is a disease with higher levels of mortality in developed countries. Comprehension of the molecular mechanisms can yield very useful information in clinics for prevention, diagnosis and recovery monitoring. Proteomics represents an ideal methodology for this purpose, as proteins constitute the effectors of the different biological processes running during pathogenesis. To date, studies in atherosclerosis have been mainly focused on the search for plasma biomarkers. However, tissue proteomics allows going deeper into tissue secretomes, arterial layers or particular cells of interest, which, in turn, constitutes a more direct approximation to in vivo operating mechanisms. The aim of this review is to report latest advances in tissue proteomics in atherosclerosis and related diseases (e.g., aortic stenosis and ischemic injury).
Electrophoresis | 2009
Gloria Alvarez-Llamas; Fernando de la Cuesta; Maria G. Barderas; Verónica M. Darde; Irene Zubiri; Carlos Caramelo
With the aim of studying a wide cohort of erythrocyte samples in a clinical setting, we propose here a novel approach that allows the analysis of both human cytosolic and membrane sub‐proteomes. Despite their simple structure, the high content of hemoglobin present in the red blood cells (RBCs) makes their proteome analysis enormously difficult. We investigate here different strategies for isolation of the membrane and cytosolic fractions from erythrocytes and their influence on proteome profiling by 2‐DE, paying particular attention to hemoglobin removal. A simple, quick and satisfactory approach for hemoglobin depletion based on HemogloBind™ reagent was satisfactorily applied to erythrocyte cells, allowing the analysis of the cytosolic sub‐proteome by 2‐DE without major interference. For membrane proteome, a novel combined strategy based on hypotonic lysis isolation and further purification on minicolumns is described here, allowing detection of high molecular weight proteins (i.e. spectrin, ankyrin) and well‐resolved 2‐DE patterns. An aliquot of the membrane fraction was also in solution digested and analyzed by nano‐LC coupled to an LTQ‐Orbitrap mass spectrometer. A total of 188 unique proteins were identified by this approach. This study sets the basis for future clinical studies where the erythrocyte cell may be implicated.