Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando Eduardo Padovan-Neto is active.

Publication


Featured researches published by Fernando Eduardo Padovan-Neto.


Cellular and Molecular Neurobiology | 2005

Role of Nitric Oxide on Motor Behavior

E. A. Del Bel; F. S. Guimarães; M. Bermũdez-Echeverry; Margarete Zanardo Gomes; A. Schiaveto-de-Souza; Fernando Eduardo Padovan-Neto; Vitor Tumas; A. P. Barion-Cavalcanti; Marcio Lazzarini; Lp Nucci-da-Silva; D. de Paula-Souza

AbstractThe present review paper describes results indicating the influence of nitric oxide (NO) on motor control. Our last studies showed that systemic injections of low doses of inhibitors of NO synthase (NOS), the enzyme responsible for NO formation, induce anxiolytic effects in the elevated plus maze whereas higher doses decrease maze exploration. Also, NOS inhibitors decrease locomotion and rearing in an open field arena.These results may involve motor effects of this compounds, since inhibitors of NOS, NG-nitro-L-arginine (L-NOARG), NG-nitro-L-arginine methylester (L-NAME), NG-monomethyl-L-arginine (L-NMMA), and 7-Nitroindazole (7-NIO), induced catalepsy in mice. This effect was also found in rats after systemic, intracebroventricular or intrastriatal administration.Acute administration of L-NOARG has an additive cataleptic effect with haloperidol, a dopamine D2 antagonist. The catalepsy is also potentiated by WAY 100135 (5-HT1a receptor antagonist), ketanserin (5HT2a and alfa1 adrenergic receptor antagonist), and ritanserin (5-HT2a and 5HT2c receptor antagonist). Atropine sulfate and biperiden, antimuscarinic drugs, block L-NOARG-induced catalepsy in mice.L-NOARG subchronic administration in mice induces rapid tolerance (3 days) to its cataleptic effects. It also produces cross-tolerance to haloperidol-induced catalepsy. After subchronic L-NOARG treatment there is an increase in the density NADPH-d positive neurons in the dorsal part of nucleus caudate-putamen, nucleus accumbens, and tegmental pedunculupontinus nucleus. In contrast, this treatment decreases NADPH-d neuronal number in the substantia nigra compacta.Considering these results we suggest that (i) NO may modulate motor behavior, probably by interfering with dopaminergic, serotonergic, and cholinergic neurotransmission in the striatum; (ii) Subchronic NO synthesis inhibition induces plastic changes in NO-producing neurons in brain areas related to motor control and causes cross-tolerance to the cataleptic effect of haloperidol, raising the possibility that such treatments could decrease motor side effects associated with antipsychotic medications.Finally, recent studies using experimental Parkinson’s disease models suggest an interaction between NO system and neurodegenerative processes in the nigrostriatal pathway. It provides evidence of a protective role of NO. Together, our results indicate that NO may be a key participant on physiological and pathophysiological processes in the nigrostriatal system.


Neuroscience | 2009

Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease

Fernando Eduardo Padovan-Neto; M.B. Echeverry; V. Tumas; Elaine Del-Bel

Chronic L-DOPA pharmacotherapy in Parkinsons disease is often accompanied by the development of abnormal and excessive movements known as L-DOPA-induced dyskinesia. Rats with 6-hydroxydopamine lesion of dopaminergic neurons chronically treated with L-DOPA develop a rodent analog of this dyskinesia characterized by severe axial, limb, locomotor and orofacial abnormal involuntary movements. While the mechanisms by which these effects occur are not clear, they may involve the nitric oxide system. In the present study we investigate if nitric oxide synthase inhibitors can prevent dyskinesias induced by repeated administration of L-DOPA in rats with unilateral 6-hydroxydopamine lesion. Chronic L-DOPA (high fixed dose, 100 mg/kg; low escalating dose, 10-30 mg/kg) treatment induced progressive dyskinesia changes. Two nitric oxide synthase inhibitors, 7-nitroindazole (1-30 mg/kg) and NG-nitro-L-arginine (50 mg/kg), given 30 min before L-DOPA, attenuate dyskinesia. 7-Nitroindazolee also improved motor performance of these animals in the rota-rod test. These results suggest the possibility that nitric oxide synthase inhibitors may be useful to treat L-DOPA-induced dyskinesia.


Current Pharmaceutical Design | 2011

Role of nitric oxide in motor control: implications for Parkinson's disease pathophysiology and treatment.

Elaine Del-Bel; Fernando Eduardo Padovan-Neto; Rita Raisman-Vozari; Marcio Lazzarini

According to classical thinking about Parkinsons disease, loss of dopaminergic input from the substantia nigra pars compacta leads to overactivity and underactivity of the indirect and direct output pathways, respectively, in the basal ganglia. Administration of the dopamine precursor L-DOPA (l-3, 4-dihydroxyphenylalanine) is proposed to induce changes in the opposite directions. L-DOPA is the most used drug to treat Parkinson`s disease symptoms. After repeated treatment with this compound, however, disabling secondary effects such as the abnormal involuntary movements usually appear. Nitric oxide is a free radical that can also act as an atypical neurotransmitter and influences dopamine-mediated neurotransmission. In this paper we will briefly review the role of nitric oxide on motor control and in Parkinsons disease, particularly a possible role of nitric oxide in L-DOPA induced dyskinesia in rodents. Recent results show that nitric oxide synthase inhibition reduces L-DOPA-induced dyskinesia in rats and mice. The effect is dose-dependent, does not suffer tolerance nor interferes with L-DOPA positive motor effects. These preclinical findings suggest that nitric oxide is a promising therapeutic target for the reduction of L-DOPA-induced dyskinesia.


Neurobiology of Disease | 2015

Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease.

Mariza Bortolanza; Roberta Cavalcanti-Kiwiatkoski; Fernando Eduardo Padovan-Neto; Célia Aparecida da-Silva; Miso Mitkovski; Rita Raisman-Vozari; Elaine Del-Bel

l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinsons disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinsons disease.


Frontiers in Systems Neuroscience | 2011

Nitric Oxide Synthase Inhibitor Improves De Novo and Long-Term l-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats

Fernando Eduardo Padovan-Neto; Marcela Bermúdez Echeverry; Silvana Chiavegatto; Elaine Del-Bel

Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (l-DOPA)-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of l-DOPA-induced abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA)-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-l-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated AIMs induced by chronic and acute l-DOPA. In contrast, rotational behavior was attenuated only after chronic l-DOPA. The 6-OHDA lesion and the l-DOPA treatment induced a bilateral increase (1.5 times) in the neuronal nitric oxide synthase (nNOS) protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic l-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under l-DOPA acute and chronic treatment. The l-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that l-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the l-DOPA structural modifications in the Parkinsonian brain. Taken together, these data provided a rationale for further evaluation of NOS inhibitors in the treatment of l-DOPA-induced dyskinesia.


Neuropharmacology | 2015

Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats

Fernando Eduardo Padovan-Neto; Roberta Cavalcanti-Kiwiatkoviski; Ruither Oliveira Gomes Carolino; Janete A. Anselmo-Franci; Elaine Aparecida Del Bel

It is well known that nitric oxide (NO) interacts with dopamine (DA) within the striatal circuitry. The anti-dyskinetic properties of NO synthase (NOS) inhibitors demonstrate the importance of NO in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID). Here, we investigated the ability of a daily co-treatment of the preferential neuronal NOS (nNOS) inhibitor, 7-nitroindazole (7-NI, 30 mg/kg), with L-DOPA (30 mg/kg) to counteract LID in unilaterally 6-OHDA-lesioned rats. We analyzed striatal nNOS-expressing interneurons, DA and 5-HT neurochemistry in the striatum and alterations of the Fos-B/ΔFosB expression in the corticostriatal, nigrostriatal and mesolimbic pathways. Prolonged administration of 7-NI inhibited the manifestation of chronic L-DOPA treatment-induced abnormal involuntary movements (AIMs). LID was associated with an up-regulation in the number of nNOS-expressing interneurons in the lateral but not medial striatum. nNOS inhibition reduced the number of nNOS-expressing interneurons. The anti-dyskinetic effects of 7-NI correlated with a reduction in DA and 5-HT turnover in the striatum. At postsynaptic striatal sites, 7-NI prevented L-DOPA-induced Fos-B/ΔFosB up-regulation in the motor cortex, nucleus accumbens and striatum. Finally, 7-NI blocked Fos-B/ΔFosB expression in nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d)-positive interneurons in the striatum. These results provide further evidence of the molecular mechanisms by which NOS-inhibiting compounds attenuate LID. The involvement of NO with DA and 5-HT neurochemistry may contribute to the understanding of this new, non-dopaminergic therapy for the management of LID.


Neuroscience Letters | 2013

Anti-dyskinetic effect of the neuronal nitric oxide synthase inhibitor is linked to decrease of FosB/deltaFosB expression.

Fernando Eduardo Padovan-Neto; Nádia Rubia Ferreira; Danielle de Oliveira-Tavares; Daniele de Aguiar; Célia Silva; Rita Raisman-Vozari; Elaine Aparecida Del Bel

Rodents with lesion of dopaminergic pathway when receiving repeated l-3,4-dihydroxiphenylalanine (l-DOPA) treatment develop abnormal involuntary movements called dyskinesia. We demonstrated that nitric oxide synthase (NOS) inhibitors mitigate l-DOPA-induced dyskinesia in rodents. The aim of the present study was to verify if the in vivo preferential neuronal NOS (nNOS) inhibitor 7-nitroindazole (7-NI) affect the expression of the transcription factor FosB/ΔFosB in the lesioned striatum, an indicator of neuronal activity associated with dyskinesia. Male Wistar rats with unilateral microinjection (medial forebrain bundle) of either the neurotoxin 6-hydroxidopamine (6-OHDA; n=4-6/group) or saline (sham; n=6/group) were provided with l-DOPA (30mg/kg plus benserazide 7.5mg/kg/day, oral gavage), once a day during 22 days. 6-OHDA-lesioned animals developed abnormal involuntary movements (AIMs) classified as axial, limb, orofacial and locomotive dyskinesia and presented FosB/ΔFosB increase in the dopamine-depleted striatum. Administration of 7-NI (30mg/kg, i.p.), 30min prior to l-DOPA reduced the severity of AIMs (≈65% for axial, limb and orofacial and 74% for locomotive AIMs scores), without interfering with the rotarod performance. Simultaneously, 7-NI attenuated the expression of FosB/ΔFosB in dopamine-depleted striatum (≈65% in medial and ≈54% in lateral striatum, bregma 0.48mm). FosB/ΔFosB expression in lateral striatum was correlated with l-DOPA-induced dyskinesia. The findings described here corroborate a new approach to the management of l-DOPA-therapy in Parkinsons disease (PD) treatment.


Frontiers in Physiology | 2012

Investigations into Potential Extrasynaptic Communication between the Dopaminergic and Nitrergic Systems

Miso Mitkovski; Fernando Eduardo Padovan-Neto; Rita Raisman-Vozari; Laure Ginestet; Célia Aparecida da-Silva; Elaine Del-Bel

Nitric oxide is unconstrained by cell membranes and can therefore act along a broad distance as a volume transmitter. Spillover of nitric oxide between neurons may have a major impact on central nervous system diseases and particularly on neurodegeneration. There is evidence whereby communication between nitrergic and dopaminergic systems plays an essential role in the control of the nigrostriatal pathway. However, there is sparse information for either the coexistence or overlap of nitric oxide and dopaminergic structures. The dual localization of immunoreactivity for nitric oxide synthase (NOS) and tyrosine hydroxylase, enzymes responsible for the synthesis of nitric oxide and dopamine, respectively, was examined in neurons of the nigrostriatal pathway in the rat brain by means of a double-immunohistochemical method and confocal laser scanning microscopy, acquired at the resolution limit. After perfusional fixation, the brains were cut and double-immunostained. A proximity analysis of tyrosine hydroxylase and NOS structures was done using binary masks generated from the respective maximum projections, using confocal laser microscopy. Unrevealed regions were determined somatodendritic positive for both NOS and tyrosine hydroxylase, within an image limit resolution at 2 μm-wide margin. The described interconnected localization of nNOS(+) and TH(+) containing neuronal fibers and cells bodies in the nigrostriatal pathway propose a close anatomical link between the two neurotransmitters.


Brazilian Journal of Medical and Biological Research | 2010

Lack of tolerance for the anti-dyskinetic effects of 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, in rats

N. Novaretti; Fernando Eduardo Padovan-Neto; Vitor Tumas; C.A. da-Silva; E.A. Del Bel

7-Nitroindazole (7-NI) inhibits neuronal nitric oxide synthase in vivo and reduces l-DOPA-induced dyskinesias in a rat model of parkinsonism. The aim of the present study was to determine if the anti-dyskinetic effect of 7-NI was subject to tolerance after repeated treatment and if this drug could interfere with the priming effect of l-DOPA. Adult male Wistar rats (200-250 g) with unilateral depletion of dopamine in the substantia nigra compacta were treated with l-DOPA (30 mg/kg) for 34 days. On the 1st day, 6 rats received ip saline and 6 received ip 7-NI (30 mg/kg) before l-DOPA. From the 2nd to the 26th day, all rats received l-DOPA daily and, from the 27th to the 34th day, they also received 7-NI before l-DOPA. Animals were evaluated before the drug and 1 h after l-DOPA using an abnormal involuntary movement scale and a stepping test. All rats had a similar initial motor deficit. 7-NI decreased abnormal involuntary movement induced by l-DOPA and the effect was maintained during the experiment before 7-NI, median (interquartile interval), day 26: 16.75 (15.88-17.00); day 28: 0.00 (0.00-9.63); day 29: 13.75 (2.25-15.50); day 30: 0.5 (0.00-6.25); day 31: 4.00 (0.00-7.13), and day 34: 0.5 (0.00-14.63), Friedman followed by Wilcoxon test,vs day 26, P < 0.05;. The response to l-DOPA alone was not modified by the use of 7-NI before the first administration of the drug (l-DOPA vs time interaction, F1,10 = 1.5, NS). The data suggest that tolerance to the anti-dyskinetic effects of a neuronal nitric oxide synthase inhibitor does not develop over a short-term period of repeated administration. These observations open a possible new therapeutic approach to motor complications of chronic l-DOPA therapy in patients with Parkinsons disease.


Philosophical Transactions of the Royal Society B | 2015

Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson's disease induced by l-DOPA?

Mariza Bortolanza; Fernando Eduardo Padovan-Neto; Roberta Cavalcanti-Kiwiatkoski; Maurício dos Santos-Pereira; Miso Mitkovski; Rita Raisman-Vozari; Elaine Del-Bel

Inflammatory mechanisms are proposed to play a role in l-DOPA-induced dyskinesia. Cyclooxygenase-2 (COX2) contributes to inflammation pathways in the periphery and is constitutively expressed in the central nervous system. Considering that inhibition of nitric oxide (NO) formation attenuates l-DOPA-induced dyskinesia, this study aimed at investigating if a NO synthase (NOS) inhibitor would change COX2 brain expression in animals with l-DOPA-induced dyskinesia. To this aim, male Wistar rats received unilateral 6-hydroxydopamine microinjection into the medial forebrain bundle were treated daily with l-DOPA (21 days) combined with 7-nitroindazole or vehicle. All hemi-Parkinsonian rats receiving l-DOPA showed dyskinesia. They also presented increased neuronal COX2 immunoreactivity in the dopamine-depleted dorsal striatum that was directly correlated with dyskinesia severity. Striatal COX2 co-localized with choline-acetyltransferase, calbindin and DARPP-32 (dopamine-cAMP-regulated phosphoprotein-32), neuronal markers of GABAergic neurons. NOS inhibition prevented l-DOPA-induced dyskinesia and COX2 increased expression in the dorsal striatum. These results suggest that increased COX2 expression after l-DOPA long-term treatment in Parkinsonian-like rats could contribute to the development of dyskinesia.

Collaboration


Dive into the Fernando Eduardo Padovan-Neto's collaboration.

Top Co-Authors

Avatar

Elaine Del-Bel

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.A. da-Silva

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suélen Merlo

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge