Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando F. Blanco is active.

Publication


Featured researches published by Fernando F. Blanco.


Oncogene | 2016

The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells.

Fernando F. Blanco; Masaya Jimbo; Wulfkuhle J; Gallagher I; Deng J; Enyenihi L; Nicole Meisner-Kober; Eric Londin; Isidore Rigoutsos; Janet A. Sawicki; Agnieska K. Witkiewicz; Peter McCue; Wei Jiang; Hallgeir Rui; Charles J. Yeo; Emanuel F. Petricoin; Jordan M. Winter; Brody

Previously, it has been shown that pancreatic ductal adenocarcinoma (PDA) tumors exhibit high levels of hypoxia, characterized by low oxygen pressure (pO2) and decreased O2 intracellular perfusion. Chronic hypoxia is strongly associated with resistance to cytotoxic chemotherapy and chemoradiation in an understudied phenomenon known as hypoxia-induced chemoresistance. The hypoxia-inducible, pro-oncogenic, serine–threonine kinase PIM1 (Proviral Integration site for Moloney murine leukemia virus 1) has emerged as a key regulator of hypoxia-induced chemoresistance in PDA and other cancers. Although its role in therapeutic resistance has been described previously, the molecular mechanism behind PIM1 overexpression in PDA is unknown. Here, we demonstrate that cis-acting AU-rich elements (ARE) present within a 38-base pair region of the PIM1 mRNA 3′-untranslated region mediate a regulatory interaction with the mRNA stability factor HuR (Hu antigen R) in the context of tumor hypoxia. Predominantly expressed in the nucleus in PDA cells, HuR translocates to the cytoplasm in response to hypoxic stress and stabilizes the PIM1 mRNA transcript, resulting in PIM1 protein overexpression. A reverse-phase protein array revealed that HuR-mediated regulation of PIM1 protects cells from hypoxic stress through phosphorylation and inactivation of the apoptotic effector BAD and activation of MEK1/2. Importantly, pharmacological inhibition of HuR by MS-444 inhibits HuR homodimerization and its cytoplasmic translocation, abrogates hypoxia-induced PIM1 overexpression and markedly enhances PDA cell sensitivity to oxaliplatin and 5-fluorouracil under physiologic low oxygen conditions. Taken together, these results support the notion that HuR has prosurvival properties in PDA cells by enabling them with growth advantages in stressful tumor microenvironment niches. Accordingly, these studies provide evidence that therapeutic disruption of HuR’s regulation of PIM1 may be a key strategy in breaking an elusive chemotherapeutic resistance mechanism acquired by PDA cells that reside in hypoxic PDA microenvironments.


Oncotarget | 2015

Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells.

Masaya Jimbo; Fernando F. Blanco; Yu-Hung Huang; Aristeidis G. Telonis; Brad Screnci; Gabriela L Cosma; Vitali Alexeev; Gregory E. Gonye; Charles J. Yeo; Janet A. Sawicki; Jordan M. Winter; Jonathan R. Brody

Post-transcriptional regulation is a powerful mediator of gene expression, and can rapidly alter the expression of numerous transcripts involved in tumorigenesis. We have previously shown that the mRNA-binding protein HuR (ELAVL1) is elevated in human pancreatic ductal adenocarcinoma (PDA) specimens compared to normal pancreatic tissues, and its cytoplasmic localization is associated with increased tumor stage. To gain a better insight into HuR’s role in PDA biology and to assess it as a candidate therapeutic target, we altered HuR expression in PDA cell lines and characterized the resulting phenotype in preclinical models. HuR silencing by short hairpin and small interfering RNAs significantly decreased cell proliferation and anchorage-independent growth, as well as impaired migration and invasion. In comparison, HuR overexpression increased migration and invasion, but had no significant effects on cell proliferation and anchorage-independent growth. Importantly, two distinct targeted approaches to HuR silencing showed marked impairment in tumor growth in mouse xenografts. NanoString nCounter® analyses demonstrated that HuR regulates core biological processes, highlighting that HuR inhibition likely thwarts PDA viability through post-transcriptional regulation of diverse signaling pathways (e.g. cell cycle, apoptosis, DNA repair). Taken together, our study suggests that targeted inhibition of HuR may be a novel, promising approach to the treatment of PDA.


Molecular and Cellular Biology | 2014

Transforming Growth Factor β Regulates P-Body Formation through Induction of the mRNA Decay Factor Tristetraprolin

Fernando F. Blanco; Sandhya Sanduja; Natasha G. Deane; Perry J. Blackshear; Dan A. Dixon

ABSTRACT Transforming growth factor β (TGF-β) is a potent growth regulator and tumor suppressor in normal intestinal epithelium. Likewise, epithelial cell growth is controlled by rapid decay of growth-related mRNAs mediated through 3′ untranslated region (UTR) AU-rich element (ARE) motifs. We demonstrate that treatment of nontransformed intestinal epithelial cells with TGF-β inhibited ARE-mRNA expression. This effect of TGF-β was promoted through increased assembly of cytoplasmic RNA processing (P) bodies where ARE-mRNA localization was observed. P-body formation was dependent on TGF-β/Smad signaling, as Smad3 deletion abrogated P-body formation. In concert with increased P-body formation, TGF-β induced expression of the ARE-binding protein tristetraprolin (TTP), which colocalized to P bodies. TTP expression was necessary for TGF-β-dependent P-body formation and promoted growth inhibition by TGF-β. The significance of this was observed in vivo, where colonic epithelium deficient in TGF-β/Smad signaling or TTP expression showed attenuated P-body levels. These results provide new insight into TGF-βs antiproliferative properties and identify TGF-β as a novel mRNA stability regulator in intestinal epithelium through its ability to promote TTP expression and subsequent P-body formation.


Oncotarget | 2016

Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis

Fernando F. Blanco; Ranjan Preet; Andrea Aguado; Vikalp Vishwakarma; Laura E. Stevens; Alok Vyas; Subhash Padhye; Liang Xu; Scott Weir; Shrikant Anant; Nicole Meisner-Kober; Jonathan R. Brody; Dan A. Dixon

Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality. Observed during CRC tumorigenesis is loss of post-transcriptional regulation of tumor-promoting genes such as COX-2, TNFα and VEGF. Overexpression of the RNA-binding protein HuR (ELAVL1) occurs during colon tumorigenesis and is abnormally present within the cytoplasm, where it post-transcriptionally regulates genes through its interaction with 3′UTR AU-rich elements (AREs). Here, we examine the therapeutic potential of targeting HuR using MS-444, a small molecule HuR inhibitor. Treatment of CRC cells with MS-444 resulted in growth inhibition and increased apoptotic gene expression, while similar treatment doses in non-transformed intestinal cells had no appreciable effects. Mechanistically, MS-444 disrupted HuR cytoplasmic trafficking and released ARE-mRNAs for localization to P-bodies, but did not affect total HuR expression levels. This resulted in MS-444-mediated inhibition of COX-2 and other ARE-mRNA expression levels. Importantly, MS-444 was well tolerated and inhibited xenograft CRC tumor growth through enhanced apoptosis and decreased angiogenesis upon intraperitoneal administration. In vivo treatment of MS-444 inhibited HuR cytoplasmic localization and decreased COX-2 expression in tumors. These findings provide evidence that therapeutic strategies to target HuR in CRC warrant further investigation in an effort to move this approach to the clinic.


Seminars in Oncology | 2015

Novel Targets in Pancreatic Cancer Research

Geoffrey M. Kozak; Fernando F. Blanco; Jonathan R. Brody

The initiation and progression of pancreatic ductal adenocarcinoma (PDA) occurs as a result of molecular alterations that typically result in fluctuations of transcription, protein expression, and ultimately dysregulated signaling pathways. For example, PDA is driven by key activating, gain-of-function mutations in proto-oncogenes (eg, K-Ras) along with loss of function of tumor suppressor genes (eg, p16, SMAD4). With the advent of whole-exome sequencing of PDA genomes, several key genetic alterations have been identified as drivers of PDA. While these findings have led to groundbreaking discoveries in the etiology of PDA, they have failed to provide feasible, targetable therapeutic approaches. Additionally, recent advances in PDA research have uncovered the role of the tumor microenvironment (the non-epithelial tumor cells) in PDA progression by promoting potent, acute changes in gene expression. Herein, this chapter is aimed at discussing the key genetic and non-genetic mechanisms responsible for PDA initiation and progression. Thus based on these mechanisms, we will put forth investigated and novel therapeutic targets in PDA.


Cancer Research | 2017

Posttranscriptional Upregulation of IDH1 by HuR Establishes a Powerful Survival Phenotype in Pancreatic Cancer Cells

Mahsa Zarei; Shruti Lal; Seth J. Parker; Avinoam Nevler; Ali Vaziri-Gohar; Katerina Dukleska; Nicole C. Mambelli-Lisboa; Cynthia Moffat; Fernando F. Blanco; Saswati N. Chand; Masaya Jimbo; Joseph A. Cozzitorto; Wei Jiang; Charles J. Yeo; Eric Londin; Erin L. Seifert; Christian M. Metallo; Jonathan R. Brody; Jordan M. Winter

Cancer aggressiveness may result from the selective pressure of a harsh nutrient-deprived microenvironment. Here we illustrate how such conditions promote chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC). Glucose or glutamine withdrawal resulted in a 5- to 10-fold protective effect with chemotherapy treatment. PDAC xenografts were less sensitive to gemcitabine in hypoglycemic mice compared with hyperglycemic mice. Consistent with this observation, patients receiving adjuvant gemcitabine (n = 107) with elevated serum glucose levels (HgbA1C > 6.5%) exhibited improved survival. We identified enhanced antioxidant defense as a driver of chemoresistance in this setting. ROS levels were doubled in vitro by either nutrient withdrawal or gemcitabine treatment, but depriving PDAC cells of nutrients before gemcitabine treatment attenuated this effect. Mechanistic investigations based on RNAi or CRISPR approaches implicated the RNA binding protein HuR in preserving survival under nutrient withdrawal, with or without gemcitabine. Notably, RNA deep sequencing and functional analyses in HuR-deficient PDAC cell lines identified isocitrate dehydrogenase 1 (IDH1) as the sole antioxidant enzyme under HuR regulation. HuR-deficient PDAC cells lacked the ability to engraft successfully in immunocompromised mice, but IDH1 overexpression in these cells was sufficient to fully restore chemoresistance under low nutrient conditions. Overall, our findings highlight the HuR-IDH1 regulatory axis as a critical, actionable therapeutic target in pancreatic cancer. Cancer Res; 77(16); 4460-71. ©2017 AACR.


Molecular Cancer Research | 2015

MUC1 promoter-driven DTA as a targeted therapeutic strategy against pancreatic cancer

Renee Tholey; Shruti Lal; Masaya Jimbo; Richard A. Burkhart; Fernando F. Blanco; Joseph A. Cozzitorto; Josh D. Eisenberg; Wei Jiang; Christine A. Iacobuzio-Donahue; Agnieszka K. Witkiewicz; Melissa Glbert; Charles J. Yeo; Jonathan R. Brody; Janet A. Sawicki; Jordan M. Winter

Mucin1 (MUC1) is overexpressed in pancreatic ductal adenocarcinoma (PDA) and is associated with tumor aggressiveness, suggesting that MUC1 is a promising therapeutic target for promoter-driven diphtheria toxin A (DTA). Endogenous MUC1 transcript levels were analyzed by quantitative PCR (qPCR) in multiple PDA cells (Capan1, HPAFII, Su.86.86, Capan2, Hs766T, MiaPaCa2, and Panc1). Expression levels were correlated with luciferase activity and cell death after transfection with MUC1 promoter–driven luciferase and DTA constructs. MUC1-positive (+) cells had significantly elevated MUC1 mRNA expression compared with MUC1-negative (−) cells. Luciferase activity was significantly higher in MUC1+ cells when transfected with MUC1 promoter–driven luciferase and MUC1+ cells underwent enhanced cell death after transfection with a single dose of MUC1 promoter–driven DTA. IFNγ pretreatment enhanced MUC1 expression in MUC1− cells and induced sensitivity to MUC1–DTA therapy. Matched primary and metastatic tumor lesions from clinical specimens revealed similar MUC1 IHC labeling patterns, and a tissue microarray of human PDA biopsies revealed increased immunolabeling with a combination of MUC1 and mesothelin (MSLN) antibodies, compared with either antibody alone. Combining MUC1 with MSLN-targeted DTA enhanced drug efficacy in an in vitro model of heterogeneous PDA. These data demonstrate that MUC1 promoter–driven DTA preferentially kills MUC1-expressing PDA cells and drugs that enhance MUC1 expression sensitize PDA cells with low MUC1 expression. Implications: MUC1 expression in primary and metastatic lesions provides a rationale for the development of a systemic MUC1 promoter–driven DTA therapy that may be further enhanced by combination with other promoter-driven DTA constructs. Mol Cancer Res; 13(3); 439–48. ©2014 AACR.


Cell Death and Disease | 2016

GPRC5A is a potential oncogene in pancreatic ductal adenocarcinoma cells that is upregulated by gemcitabine with help from HuR.

Honglei Zhou; Aristeidis G. Telonis; Yi Jing; N L Xia; L Biederman; Masaya Jimbo; Fernando F. Blanco; Eric Londin; Jonathan R. Brody; Isidore Rigoutsos

GPRC5A is an orphan G-protein coupled receptor with an intriguing dual behavior, acting as an oncogene in some cancers and as a tumor suppressor in other cancers. In the pancreatic cancer context, very little is known about GPRC5A. By analyzing messenger RNA (mRNA) expression data from 675 human cancer cell lines and 10 609 samples from The Cancer Genome Atlas (TCGA) we found that GPRC5A’s abundance in pancreatic cancer is highest (cell lines) or second highest (TCGA) among all tissues and cancer types. Further analyses of an independent set of 252 pancreatic normal and cancer samples showed GPRC5A mRNA to be more than twofold upregulated in primary tumor samples compared with normal pancreas (P-value<10−5), and even further upregulated in pancreatic cancer metastases to various organs (P-value=0.0021). Immunostaining of 208 cores (103 samples) of a tissue microarray showed generally low expression of GPRC5A protein in normal pancreatic ductal cells; on the other hand, in primary and metastatic samples, GPRC5A protein levels were dramatically increased in pancreatic ductal cells. In vitro studies of multiple pancreatic cancer cell lines showed that an increase in GPRC5A protein levels promoted pancreatic cancer cell growth and migration. Unexpectedly, when we treated pancreatic cancer cell lines with gemcitabine (2′,2′-difluorodeoxycytidine), we observed an increase in GPRC5A protein abundance. On the other hand, when we knocked down GPRC5A we sensitized pancreatic cancer cells to gemcitabine. Through further experimentation we showed that the monotonic increase in GPRC5A protein levels that we observe for the first 18 h following gemcitabine treatment results from interactions between GPRC5A’s mRNA and the RNA-binding protein HuR, which is an established key mediator of gemcitabine’s efficacy in cancer cells. As we discovered, the interaction between GPRC5A and HuR is mediated by at least one HuR-binding site in GPRC5A’s mRNA. Our findings indicate that GPRC5A is part of a complex molecular axis that involves gemcitabine and HuR, and, possibly, other genes. Further work is warranted before it can be established unequivocally that GPRC5A is an oncogene in the pancreatic cancer context.


Methods of Molecular Biology | 2015

Studying RNA-Binding Protein Interactions with Target mRNAs in Eukaryotic Cells: Native Ribonucleoprotein Immunoprecipitation (RIP) Assays

Joseph A. Cozzitorto; Masaya Jimbo; Saswati N. Chand; Fernando F. Blanco; Shruti Lal; Melissa Gilbert; Jordan M. Winter; Myriam Gorospe; Jonathan R. Brody

Post-transcriptional regulation of mRNA can potently dictate protein expression patterns in eukaryotic cells. This mode of regulation occurs through cis-acting regulatory regions in the mRNA transcript that mediate direct interactions with trans-acting RNA-binding proteins (RBPs). This mRNA/protein interaction can be studied in numerous ways that range from in vitro to in vivo through messenger ribonucleoprotein immunoprecipitation (mRNP-IP or RIP) assays. This modified immunoprecipitation approach is an important and sensitive method to determine the regulation of gene expression by specific RBPs under different cellular stressors.


Biology of Reproduction | 2015

Tamoxifen Prevents Apoptosis and Follicle Loss from Cyclophosphamide in Cultured Rat Ovaries

Joanna Piasecka-Srader; Fernando F. Blanco; Devora H. Delman; Dan A. Dixon; James L. Geiser; Renata E. Ciereszko; Brian K. Petroff

ABSTRACT Recent studies documented that the selective estrogen receptor modulator tamoxifen prevents follicle loss and promotes fertility following in vivo exposure of rodents to irradiation or ovotoxic cancer drugs, cyclophosphamide and doxorubicin. In an effort to characterize the ovarian-sparing mechanisms of tamoxifen in preantral follicle classes, cultured neonatal rat ovaries (Day 4, Sprague Dawley) were treated for 1–7 days with active metabolites of cyclophosphamide (i.e., 4-hydroxycyclophosphamide; CTX) (0, 1, and 10 μM) and tamoxifen (i.e., 4-hydroxytamoxifen; TAM) (0 and 10 μM) in vitro, and both apoptosis and follicle numbers were measured. CTX caused marked follicular apoptosis and follicular loss. TAM treatment decreased follicular loss and apoptosis from CTX in vitro. TAM alone had no effect on these parameters. IGF-1 and IGF-1 receptor were assessed in ovarian tissue showing no impact of TAM or CTX on these endpoints. Targeted mRNA analysis during follicular rescue by TAM revealed decreased expression of multiple genes related to inflammation, including mediators of lipoxygenase and prostaglandin production and signaling (Alox5, Pla2g1b, Ptgfr), cytokine binding (Il1r1, Il2rg ), apoptosis (Tnfrsf1a), second messenger signaling (Mapk1, Mapk14, Plcg1), as well as tissue remodeling and vasodilation (Bdkrb2, Klk15). The results suggest that TAM protects the ovary from CTX-mediated toxicity through direct ovarian actions that oppose follicular loss.

Collaboration


Dive into the Fernando F. Blanco's collaboration.

Top Co-Authors

Avatar

Jonathan R. Brody

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Jordan M. Winter

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles J. Yeo

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Masaya Jimbo

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Eric Londin

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Isidore Rigoutsos

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shruti Lal

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge