Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando G. S. L. Brandao is active.

Publication


Featured researches published by Fernando G. S. L. Brandao.


international quantum electronics conference | 2007

Strongly Interacting Polaritons in Coupled Arrays of Cavities

Michael J. Hartmann; Fernando G. S. L. Brandao; Martin B. Plenio

Observing quantum phenomena in strongly correlated many-particle systems is difficult because of the short length- and timescales involved. Exerting control over the state of individual elements within such a system is even more so, and represents a hurdle in the realization of quantum computing devices. Substantial progress has been achieved with arrays of Josephson junctions and cold atoms in optical lattices, where detailed control over collective properties is feasible, but addressing individual sites remains a challenge. Here we show that a system of polaritons held in an array of resonant optical cavities—which could be realized using photonic crystals or toroidal microresonators—can form a strongly interacting many-body system showing quantum phase transitions, where individual particles can be controlled and measured. The system also offers the possibility to generate attractive on-site potentials yielding highly entangled states and a phase with particles much more delocalized than in superfluids.


Laser & Photonics Reviews | 2008

Quantum many-body phenomena in coupled cavity arrays

Michael J. Hartmann; Fernando G. S. L. Brandao; Martin B. Plenio

The increasing level of experimental control over atomic and optical systems gained in the past years have paved the way for the exploration of new physical regimes in quantum optics and atomic physics, characterised by the appearance of quantum many-body phenomena, originally encountered only in condensed-matter physics, and the possibility of experimentally accessing them in a more controlled manner. In this review article we survey recent theoretical studies concerning the use of cavity quantum electrodynamics to create quantum many-body systems. Based on recent experimental progress in the fabrication of arrays of interacting micro-cavities and on their coupling to atomic-like structures in several different physical architectures, we review proposals on the realisation of paradigmatic many-body models in such systems, such as the Bose-Hubbard and the anisotropic Heisenberg models. Such arrays of coupled cavities offer interesting properties as simulators of quantum many-body physics, including the full addressability of individual sites and the accessibility of inhomogeneous models.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The second laws of quantum thermodynamics.

Fernando G. S. L. Brandao; Michal Horodecki; Nelly Huei Ying Ng; Jonathan Oppenheim; Stephanie Wehner

Significance In ordinary thermodynamics, transitions are governed by a single quantity–the free energy. Its monotonicity is a formulation of the second law. Here, we find that the second law for microscopic or highly correlated systems takes on a very different form than it does at the macroscopic scale, imposing not just one constraint on state transformations, but many. We find a family of quantum free energies which generalize the standard free energy, and can never increase. The ordinary second law corresponds to the nonincreasing of one of these free energies, with the remainder imposing additional constraints on thermodynamic transitions. In the thermodynamic limit, these additional second laws become equivalent to the standard one. We also prove a strengthened version of the zeroth law of thermodynamics, allowing a definition of temperature. The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies.


Physical Review Letters | 2013

Resource Theory of Quantum States Out of Thermal Equilibrium

Fernando G. S. L. Brandao; Michal Horodecki; Jonathan Oppenheim; Joseph M. Renes; Robert W. Spekkens

The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here, we return to the basic questions of thermodynamics using the formalism of resource theories developed in quantum information theory and show that the free energy of thermodynamics emerges naturally from the resource theory of energy-preserving transformations. Specifically, the free energy quantifies the amount of useful work which can be extracted from asymptotically many copies of a quantum system when using only reversible energy-preserving transformations and a thermal bath at fixed temperature. The free energy also quantifies the rate at which resource states can be reversibly interconverted asymptotically, provided that a sublinear amount of coherent superposition over energy levels is available, a situation analogous to the sublinear amount of classical communication required for entanglement dilution.


Communications in Mathematical Physics | 2011

Faithful Squashed Entanglement

Fernando G. S. L. Brandao; Matthias Christandl; Jon Yard

Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled.We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing.The distance to the set of separable states is measured in terms of the LOCC norm, an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and classical communication (LOCC) between the parties. A similar result for the Frobenius or Euclidean norm follows as an immediate consequence.The result has two applications in complexity theory. The first application is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in LOCC or Euclidean norm. The second application concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA.


Physical Review Letters | 2007

Effective spin systems in coupled microcavities.

M. Hartmann; Fernando G. S. L. Brandao; Martin B. Plenio

We show that atoms trapped in microcavities that interact via the exchange of virtual photons can model an anisotropic Heisenberg spin-1/2 lattice in an external magnetic field. All parameters of the effective Hamiltonian can individually be tuned via external lasers. Since the occupations of excited atomic levels and photonic states are strongly suppressed, the effective model is robust against decoherence mechanisms, has a long lifetime, and its implementation is feasible with current experimental technology. The model provides a feasible way to create cluster states in these devices.


Physical Review A | 2005

Quantifying entanglement with witness operators

Fernando G. S. L. Brandao

We present a unifying approach to the quantification of entanglement based on entanglement witnesses, which includes several already established entanglement measures such as the negativity, the concurrence, and the robustness of entanglement. We then introduce an infinite family of new entanglement quantifiers, having as its limits the best separable approximation measure and the generalized robustness. Gaussian states, states with symmetry, states constrained to super-selection rules, and states composed of indistinguishable particles are studied under the view of the witnessed entanglement. We derive new bounds to the fidelity of teleportation d_(min), for the distillable entanglement E_D and for the entanglement of formation. A particular measure, the PPT-generalized robustness, stands out due to its easy calculability and provides sharper bounds to d_(min) and E_D than the negativity in most of the states. We illustrate our approach studying thermodynamical properties of entanglement in the Heisenberg XXX and dimerized models.


Physical Review Letters | 2015

Reversible Framework for Quantum Resource Theories.

Fernando G. S. L. Brandao; Gilad Gour

In recent years it was recognized that properties of physical systems such as entanglement, athermality, and asymmetry, can be viewed as resources for important tasks in quantum information, thermodynamics, and other areas of physics. This recognition followed by the development of specific quantum resource theories (QRTs), such as entanglement theory, determining how quantum states that cannot be prepared under certain restrictions may be manipulated and used to circumvent the restrictions. Here we show that all such QRTs have a general structure, consisting of three components: free states, restricted/allowed set of operations, and resource states. We show that under a few physically motivated assumptions, a QRT is asymptotically reversible if its set of allowed operations is maximal ; that is, if the allowed operations are the set of all operations that do not generate (asymptotically) a resource. In this case, the asymptotic conversion rate is given in terms of the regularized relative entropy of a resource which is the unique measure/quantifier of the resource in the asymptotic limit of many copies of the state. We also show that this measure equals the smoothed version of the logarithmic robustness of the resource.


Nature Physics | 2008

Entanglement theory and the second law of thermodynamics

Fernando G. S. L. Brandao; Martin B. Plenio

Entanglement is central both to the foundations of quantum theory and, as a novel resource, to quantum information science. The theory of entanglement establishes basic laws that govern its manipulation, in particular the non-increase of entanglement under local operations on the constituent particles. Such laws aim to draw from them formal analogies to the second law of thermodynamics; however, whereas in the second law the entropy uniquely determines whether a state is adiabatically accessible from another, the manipulation of entanglement under local operations exhibits a fundamental irreversibility, which prevents the existence of such an order. Here, we show that a reversible theory of entanglement and a rigorous relationship with thermodynamics may be established when considering all non-entangling transformations. The role of the entropy in the second law is taken by the asymptotic relative entropy of entanglement in the basic law of entanglement. We show the usefulness of this approach to general resource theories and to quantum information theory.


Communications in Mathematical Physics | 2010

A Generalization of Quantum Stein’s Lemma

Fernando G. S. L. Brandao; Martin B. Plenio

Given many independent and identically-distributed (i.i.d.) copies of a quantum system described either by the state ρ or σ (called null and alternative hypotheses, respectively), what is the optimal measurement to learn the identity of the true state? In asymmetric hypothesis testing one is interested in minimizing the probability of mistakenly identifying ρ instead of σ, while requiring that the probability that σ is identified in the place of ρ is bounded by a small fixed number. Quantum Stein’s Lemma identifies the asymptotic exponential rate at which the specified error probability tends to zero as the quantum relative entropy of ρ and σ.We present a generalization of quantum Stein’s Lemma to the situation in which the alternative hypothesis is formed by a family of states, which can moreover be non-i.i.d. We consider sets of states which satisfy a few natural properties, the most important being the closedness under permutations of the copies. We then determine the error rate function in a very similar fashion to quantum Stein’s Lemma, in terms of the quantum relative entropy.Our result has two applications to entanglement theory. First it gives an operational meaning to an entanglement measure known as regularized relative entropy of entanglement. Second, it shows that this measure is faithful, being strictly positive on every entangled state. This implies, in particular, that whenever a multipartite state can be asymptotically converted into another entangled state by local operations and classical communication, the rate of conversion must be non-zero. Therefore, the operational definition of multipartite entanglement is equivalent to its mathematical definition.

Collaboration


Dive into the Fernando G. S. L. Brandao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aram Wettroth Harrow

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pawel Horodecki

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Berta

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge