Fernando Galvez
Louisiana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando Galvez.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2002
Paul R. Paquin; Joseph W. Gorsuch; Simon C. Apte; Graeme E. Batley; Karl C. Bowles; Peter G. C. Campbell; Charles G. Delos; Dominic M. Di Toro; Robert L. Dwyer; Fernando Galvez; Robert W. Gensemer; Gregory G. Goss; Christer Hogstrand; Colin R. Janssen; James C. McGeer; Rami B. Naddy; Richard C. Playle; Robert C. Santore; Uwe A. Schneider; William A. Stubblefield; Chris M. Wood; Kuen Benjamin Wu
During recent years, the biotic ligand model (BLM) has been proposed as a tool to evaluate quantitatively the manner in which water chemistry affects the speciation and biological availability of metals in aquatic systems. This is an important consideration because it is the bioavailability and bioreactivity of metals that control their potential to cause adverse effects. The BLM approach has gained widespread interest amongst the scientific, regulated and regulatory communities because of its potential for use in developing water quality criteria (WQC) and in performing aquatic risk assessments for metals. Specifically, the BLM does this in a way that considers the important influences of site-specific water quality. This journal issue includes papers that describe recent advances with regard to the development of the BLM approach. Here, the current status of the BLM development effort is described in the context of the longer-term history of advances in the understanding of metal interactions in the environment upon which the BLM is based. Early developments in the aquatic chemistry of metals, the physiology of aquatic organisms and aquatic toxicology are reviewed first, and the degree to which each of these disciplines influenced the development of water quality regulations is discussed. The early scientific advances that took place in each of these fields were not well coordinated, making it difficult for regulatory authorities to take full advantage of the potential utility of what had been learned. However, this has now changed, with the BLM serving as a useful interface amongst these scientific disciplines, and within the regulatory arena as well. The more recent events that have led to the present situation are reviewed, and consideration is given to some of the future needs and developments related to the BLM that are envisioned. The research results that are described in the papers found in this journal issue represent a distinct milestone in the ongoing evolution of the BLM approach and, more generally, of approaches to performing ecological assessments for metals in aquatic systems. These papers also establish a benchmark to which future scientific and regulatory developments can be compared. Finally, they demonstrate the importance and usefulness of the concept of bioavailability and of evaluative tools such as the BLM.
Aquatic Toxicology | 1996
Chris M. Wood; Christer Hogstrand; Fernando Galvez; R. S. Munger
Abstract Adult rainbow trout, fitted with arterial catheters, were exposed to AgNO3 for 6 days at a concentration (10 μg Ag l−1, flow-through) close to the 7 day LC50 in moderately hard freshwater. Approximately 35% of total Ag occurred as free ionic Ag+, and the remainder as silver chlorides. Ag accumulated on the gills and increased about 4-fold above control levels in blood plasma, stabilizing by 48 h. Much greater concentrations of Ag accumulated in the liver, but not the kidney, at 6 days. Metallothionein induction did not occur. Plasma [Na+] and [Cl−] declined steadily to 70% of control levels by day 6, accompanied by a progressive metabolic acidosis, a 5-fold increase in blood [glucose], a 40% decrease in relative plasma volume, contraction of the spleen, and marked hemoconcentration. Plasma [Ca2+] and [K+] were largely unaffected. Respiratory suffocation did not occur: plasma [lactate] remained constant, arterial PO2 increased and PCO2 decreased, the latter compensating the metabolic acidosis so arterial pH fell only moderately. Comparably sampled control fish exhibited negligible disturbance. Unidirectional Na+ influx from the water, measured in juvenile trout, was inhibited by 42% immediately, and abolished by 48 h of AgNO3 exposure. These symptoms suggested a similar toxic mechanism of action to that of low environmental pH. We speculate that Ag+ interferes with net Na+ and Cl− uptake at the gills, and causes death by secondary fluid volume disturbance, hemoconcentration, and eventual cardiovascular collapse.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Andrew Whitehead; Benjamin Dubansky; Charlotte Bodinier; Tzintzuni Garcia; Scott Miles; Chet Pilley; Vandana Raghunathan; Jennifer L. Roach; Nan D. Walker; Ronald B. Walter; Charles D. Rice; Fernando Galvez
The biological consequences of the Deepwater Horizon oil spill are unknown, especially for resident organisms. Here, we report results from a field study tracking the effects of contaminating oil across space and time in resident killifish during the first 4 mo of the spill event. Remote sensing and analytical chemistry identified exposures, which were linked to effects in fish characterized by genome expression and associated gill immunohistochemistry, despite very low concentrations of hydrocarbons remaining in water and tissues. Divergence in genome expression coincides with contaminating oil and is consistent with genome responses that are predictive of exposure to hydrocarbon-like chemicals and indicative of physiological and reproductive impairment. Oil-contaminated waters are also associated with aberrant protein expression in gill tissues of larval and adult fish. These data suggest that heavily weathered crude oil from the spill imparts significant biological impacts in sensitive Louisiana marshes, some of which remain for over 2 mo following initial exposures.
Environmental Science & Technology | 2013
Benjamin Dubansky; Andrew Whitehead; Jeffrey T. Miller; Charles D. Rice; Fernando Galvez
The Deepwater Horizon oil rig disaster resulted in crude oil contamination along the Gulf coast in sensitive estuaries. Toxicity from exposure to crude oil can affect populations of fish that live or breed in oiled habitats as seen following the Exxon Valdez oil spill. In an ongoing study of the effects of Deepwater Horizon crude oil on fish, Gulf killifish ( Fundulus grandis ) were collected from an oiled site (Grande Terre, LA) and two reference locations (coastal MS and AL) and monitored for measures of exposure to crude oil. Killifish collected from Grande Terre had divergent gene expression in the liver and gill tissue coincident with the arrival of contaminating oil and up-regulation of cytochrome P4501A (CYP1A) protein in gill, liver, intestine, and head kidney for over one year following peak landfall of oil (August 2011) compared to fish collected from reference sites. Furthermore, laboratory exposures of Gulf killifish embryos to field-collected sediments from Grande Terre and Barataria Bay, LA, also resulted in increased CYP1A and developmental abnormalities when exposed to sediments collected from oiled sites compared to exposure to sediments collected from a reference site. These data are predictive of population-level impacts in fish exposed to sediments from oiled locations along the Gulf of Mexico coast.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Andrew Whitehead; Jennifer L. Roach; Shujun Zhang; Fernando Galvez
Adaptive variation tends to emerge clinally along environmental gradients or discretely among habitats with limited connectivity. However, in Atlantic killifish (Fundulus heteroclitus), a population genetic discontinuity appears in the absence of obvious barriers to gene flow along parallel salinity clines and coincides with a physiologically stressful salinity. We show that populations resident on either side of this discontinuity differ in their abilities to compensate for osmotic shock and illustrate the physiological and functional genomic basis of population variation in hypoosmotic tolerance. A population native to a freshwater habitat, upstream of the genetic discontinuity, exhibits tolerance to extreme hypoosmotic challenge, whereas populations native to brackish or marine habitats downstream of the discontinuity lose osmotic homeostasis more severely and take longer to recover. Comparative transcriptomics reveals a core transcriptional response associated with acute and acclimatory responses to hypoosmotic shock and posits unique mechanisms that enable extreme osmotic tolerance. Of the genes that vary in expression among populations, those that are putatively involved in physiological acclimation are more likely to exhibit nonneutral patterns of divergence between freshwater and brackish populations. It is not the well-known effectors of osmotic acclimation, but rather the lesser-known immediate-early responses, that appear important in contributing to population differences.
Biotechnology Advances | 2002
Norman F. Neumann; Fernando Galvez
Toxicogenomics attempts to define how the regulation and expression of genes mediate the toxicological effects associated with exposure to a chemical. DNA microarrays are rapidly becoming one of the tools of choice for large-scale toxicogenomic studies. An approach in modern toxicogenomics has been to classify toxicity based on gene transcriptional patterns; comparing the transcriptional responses of a chemical with unknown toxicity to those for which the transcriptional profiles and toxicological endpoints have been well characterized. Recent evidence suggests that gene expression microarrays may be instrumental in defining mechanisms of action of toxicants. However, several assumptions are inherent to a toxicogenomic-based approach in toxicology, many of which remain to be validated. Gene expression profiling using DNA microarrays represents a snapshot of the gene transcriptional responses occurring at a particular time and within a particular tissue. Toxicity, on the other hand, represents a continuum of possible effects governed by both temporal and spatial factors that are inextricably contingent upon the exposure conditions. The perceived toxicological properties of any chemical are dependent on the route, dose, and duration of the exposure, and as such, gene expression patterns are also subject to these variables. Correct interpretation of DNA microarray data for the assessment of the toxicological properties of chemicals will require that temporal and spatial gene expression profiles be accounted for. These considerations are further compounded in ecotoxicological studies, during which altered gene expression patterns induced from exposure to an anthropogenic substance must be discernible over and above the complex effects that phenotypic, genotypic, and environmental variables have on gene expression. To this end, the greatest utility of DNA microarrays in the field of ecotoxicology may be in predicting the toxicological modes of action of anthropogenic substances on host physiology, particularly in non-model organisms. Predictable and accurate assessment of the impacts of a chemical substance in ecotoxicology will require that classical toxicological endpoints be used to validate any effects predicted based on gene expression profiling. Validated expression profiling may subsequently find utility in ecotoxicological-based computer simulation models, such as the Biotic Ligand Model (BLM), in which gene expression information may be integrated with geochemical, pharmacokinetic, and physiological data to accurately assess and predict toxicity of metals to aquatic organisms.
The Journal of Experimental Biology | 2003
Scott D. Reid; Guy Hawkings; Fernando Galvez; Greg G. Goss
SUMMARY Percoll density-gradient separation, combined with peanut lectin agglutinin (PNA) binding and magnetic bead separation, was used to separate dispersed fish gill cells into sub-populations. Functional characterization of each of the sub-populations was performed to determine which displayed acid-activated phenamil- and bafilomycin-sensitive Na+ uptake. Analysis of the mechanism(s) of 22Na+ influx was performed in control and acid-activated (addition of 10 mmoll-1 proprionic acid) cells using a variety of Na+ transport inhibitors (ouabain, phenamil, HOE-694 and bumetanide) and a V-type ATPase inhibitor (bafilomycin). We found that cells migrating to a 1.03-1.05 g ml-1 Percoll interface [pavement cells (PVCs)] possessed the lowest rates of Na+ uptake and that influx was unchanged during either bafilomycin (10 nmoll-1) treatment or internal acidification with addition of proprionic acid (10 mmoll-1). Mitochondria-rich (MR) cells that migrated to the 1.05-1.09 g ml-1 interface of the Percoll gradient demonstrated acidification-activated bafilomycin and phenamil-sensitive Na+ influx. Further separation of the MR fraction into PNA+ and PNA- fractions using magnetic separation demonstrated that only the PNA- cells (α-MR cells) demonstrated phenamil-and bafilomycin-sensitive acid-activated 22Na+ uptake. We confirm the coupling of a V-type H+-ATPase with phenamil-sensitive Na+ uptake activity and conclude that high-density α-MR cells function in branchial Na+ uptake in freshwater fish.
Marine Pollution Bulletin | 2010
Pierre-Yves Pascal; John W. Fleeger; Fernando Galvez; Kevin R. Carman
Increased atmospheric CO(2) concentrations are causing greater dissolution of CO(2) into seawater, and are ultimately responsible for todays ongoing ocean acidification. We manipulated seawater acidity by addition of HCl and by increasing CO(2) concentration and observed that two coastal harpacticoid copepods, Amphiascoides atopus and Schizopera knabeni were both more sensitive to increased acidity when generated by CO(2). The present study indicates that copepods living in environments more prone to hypercapnia, such as mudflats where S. knabeni lives, may be less sensitive to future acidification. Ocean acidification is also expected to alter the toxicity of waterborne metals by influencing their speciation in seawater. CO(2) enrichment did not affect the free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO(2) with Cd, Cu and Cu free-ion in A. atopus. This interaction could be due to a competition for H(+) and metals for binding sites.
The Journal of Experimental Biology | 2006
Arash Shahsavarani; Brian McNeill; Fernando Galvez; Chris M. Wood; Gregory G. Goss; Pung-Pung Hwang; S. F. Perry
SUMMARY The entry of calcium (Ca2+) through an apical membrane epithelial calcium channel (ECaC) is thought to a key step in piscine branchial Ca2+ uptake. In mammals, ECaC is a member of the transient receptor potential (TRP) gene family of which two sub-families have been identified, TRPV5 and TPRV6. In the present study we have identified a single rainbow trout (Oncorhynchus mykiss) ECaC (rtECaC) that is similar to the mammalian TRPV5 and TRPV6. Phylogenetic analysis of the protein sequence suggests that an ancestral form of the mammalian genes diverged from those in the lower vertebrates prior to the gene duplication event that gave rise to TRPV5 and TRPV6. The putative model for Ca2+ uptake in fish proposes that the mitochondria-rich cell (also termed ionocyte or chloride cell) is the predominant or exclusive site of transcellular Ca2+ movements owing to preferential localisation of ECaC to the apical membrane of these cells. However, the results of real-time PCR performed on enriched gill cell populations as well as immunocytochemistry and in situ hybridisation analysis of enriched cells, cell cultures and whole gill sections strongly suggest that ECaC is not exclusive to mitochondria-rich cells but that it is also found in pavement cells. Not only was ECaC protein localized to areas of the gill normally having few mitochondria-rich cells, but there was also no consistent co-localization of ECaC- and Na+/K+-ATPase-positive (a marker of mitochondria rich cells) cells. Taken together, the results of the present study suggest that although ECaC (mRNA and protein) does exist in trout gill, its cellular distribution is more extensive than previously thought, thus suggesting that Ca2+ uptake may not be restricted to mitochondria-rich cells as was proposed in previous models.
The Journal of Experimental Biology | 2012
Andrew Whitehead; Jennifer L. Roach; Shujun Zhang; Fernando Galvez
SUMMARY The killifish Fundulus heteroclitus is abundant in osmotically dynamic estuaries and it can quickly adjust to extremes in environmental salinity. We performed a comparative osmotic challenge experiment to track the transcriptomic and physiological responses to two salinities throughout a time course of acclimation, and to explore the genome regulatory mechanisms that enable extreme osmotic acclimation. One southern and one northern coastal population, known to differ in their tolerance to hypo-osmotic exposure, were used as our comparative model. Both populations could maintain osmotic homeostasis when transferred from 32 to 0.4 p.p.t., but diverged in their compensatory abilities when challenged down to 0.1 p.p.t., in parallel with divergent transformation of gill morphology. Genes involved in cell volume regulation, nucleosome maintenance, ion transport, energetics, mitochondrion function, transcriptional regulation and apoptosis showed population- and salinity-dependent patterns of expression during acclimation. Network analysis confirmed the role of cytokine and kinase signaling pathways in coordinating the genome regulatory response to osmotic challenge, and also posited the importance of signaling coordinated through the transcription factor HNF-4α. These genome responses support hypotheses of which regulatory mechanisms are particularly relevant for enabling extreme physiological flexibility.